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Recent years have witnessed the rapid accumulation of massive electronic medical records, which highly

support intelligent medical services such as drug recommendation. However, although there are multiple

interaction types between drugs, e.g., synergism and antagonism, which can influence the effect of a drug

package significantly, prior arts generally neglect the interaction between drugs or consider only a single type

of interaction. Moreover, most existing studies generally formulate the problem of package recommendation

as getting a personalized scoring function for users, despite the limits of discriminative models to achieve

satisfactory performance in practical applications. To this end, in this article, we propose a novel end-to-

end Drug Package Generation (DPG) framework, which develops a new generative model for drug package

recommendation that considers the interaction effects between drugs that are affected by patient conditions.

Specifically, we propose to formulate the drug package generation as a sequence generation process. Along

this line, we first initialize the drug interaction graph based on medical records and domain knowledge. Then,

we design a novel message-passing neural network to capture the drug interaction, as well as a drug package

generator based on a recurrent neural network. In detail, a mask layer is utilized to capture the impact of

patient condition, and the deep reinforcement learning technique is leveraged to reduce the dependence on

the drug order. Finally, extensive experiments on a real-world dataset from a first-rate hospital demonstrate

the effectiveness of our DPG framework compared with several competitive baseline methods.
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1 INTRODUCTION

With the growth of population and the intensification of population aging, people’s demand for
high-quality medical services continues to rise, and the pressure on the medical workers is increas-
ing. Moreover, certain public health emergencies, such as the outbreak of COVID-19, will also have
a significant impact on the medical system. Meanwhile, artificial intelligence (AI) technologies
have shown enormous potential to reduce human labor. Therefore, if AI technologies could be
effectively utilized to realize intelligent diagnosis and drug recommendation clinically, then it will
greatly improve the overall quality of medical services.
Fortunately, with the popularization of information technology in the medical industry, elec-

tronic medical records (EMRs) have been widely used in major hospitals, which powerfully
support downstream intelligent applications like medical image analysis [16, 35], medical text
analysis [2, 40], and drug recommendation [45, 46, 55, 77]. However, prior arts may still fail to
recommend drugs accurately due to the following reasons. First, most patients have only been
recorded once or several times in the EMR database, which makes it hard to utilize conventional
personalized recommendation methods based on user preference analysis. Second, it is crucial for
the recommender system to consider both drug effect and the interaction between drugs at the
same time, and give the patient a suitable drug package, which contains multiple drugs. Further-
more, there are multiple interaction types between drugs, e.g., synergism and antagonism, and the
interaction of drugs may have different effects on different patients. However, most existing stud-
ies generally neglect the interaction between drugs or consider only a single type of interaction
[46, 55], and these methods cannot capture the personalized effect of drug interaction for differ-
ent patients either. Third, most existing studies on package recommendation [9, 10, 77] generally
formulate the problem as getting a personalized scoring function for users, i.e., getting a discrimi-
native model. However, discriminative models can only select suitable packages that already exist
within the EMR database, which may fail to meet the needs of new patients. Therefore, there are
limits for existing methods to achieve satisfactory performance in practical applications.
To tackle the above challenges, in this article, we propose a novel drug package recommendation

framework named Drug Package Generation (DPG). Following References [65, 77], we formu-
late the drug package generation problem as a sequence generation process, and we capture the
influence of drug interaction based on Message-passing Neural Network (MPNN) and mask
vectors. The rationale behind capturing the drug interaction is that the interaction between drugs
will influence the effect of the drug package, and the impact of drug interaction on drug effect
will be further affected by patient conditions. We illustrate this by a patient with kidney disease as
shown in Figure 1. The drug package for this patient contains three drugs, respectively, pyridox-
ine, aztreonam, and cefuroxime. Cefuroxime is synergistic with the other two drugs, which can
improve the effectiveness of the drug package. Torasemide is antagonistic with pyridoxine, so it
is not included in the package. Furthermore, the combination of cefuroxime and gentamicin has
a synergistic antibacterial effect, but at the same time it may increase nephrotoxicity, so it is not
suitable for this patient. Along this line, we first collect drug interaction data from a public online
medical knowledge base and divide drug pairs into three categories with the help of domain ex-
perts, respectively, No Interaction, Synergism, and Antagonism. Based on the interaction data, we
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Fig. 1. An example for a patient with kidney disease. Blue nodes indicate drugs. Green edges connecting two

blue nodes indicate synergism, while red edges connecting two blue nodes indicate antagonism or toxicity.

construct a drug interaction graph that contains all the drugs in the EMR dataset. After that, we
formulate the drug interaction graph as an attributed graph and utilize the edge attribute vectors
to describe the influence of drug interaction based on MPNN. Then, we propose a novel drug pack-
age generator based on Recurrent Neural Network (RNN). In each step of the RNN generation,
we exploit a mask layer to explicitly capture the patient condition’s impact on the drug interac-
tion. Furthermore, we utilize reinforcement learning to reduce the dependence on the drug order,
and we propose a joint learning method to train the MPNN and RNN models simultaneously. Fi-
nally, extensive experiments on two real-world datasets demonstrate the effectiveness of our DPG
framework compared with several competitive baseline methods. To the best of our knowledge,
the contribution of this article can be summarized as follows:

• We develop a new end-to-end framework named DPG to generate drug packages based on a
recurrent neural network, which can capture the effect of different types of drug interaction
and the influence of the patient condition explicitly.
• We propose to construct a drug interaction graph based on the drug interaction data, and
we further design a message-passing neural network to get the drug embedding and capture
the interaction between drugs.
• We propose a hybrid loss function to learn the parameters of our DPG model. Furthermore,
we propose training strategies to reduce the dependence on the drug order based on both
maximum likelihood estimation and policy gradient and testing strategies to generate a can-
didate package set and provide the best drug package for a specific patient.
• We conduct extensive experiments on two real-world datasets, which validate the effective-
ness of our DPG framework.

Note that to solve the drug recommendation problem, we have done some preliminary work
in Reference [77] and proposed a framework named DPR. However, there are many differences
between DPR and DPG. The essential difference is that DPR is a discriminative model that can
only select suitable packages that already exist within the data, while DPG is a generative model
based on RNN, which can generate new drug packages for patients after the training process.
Therefore, DPR is trained by BPR loss function, while DPG is trained by reinforcement learning.
Furthermore, DPR utilizes the MPNN model only for the drugs in a specific drug package, while
DPG utilizes the MPNN model on the graph that consists of all the drugs in the dataset to get the
drug embedding and capture the interaction.
Overview. The rest of this article is organized as follows: In Section 2, we briefly introduce

some related works of our study. In Section 3, we introduce the preliminaries and formally define
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the problem of drug package recommendation. Technical details of our Drug Package Generation
framework will be introduced in Section 4. Then, we comprehensively evaluate the model perfor-
mance in Section 5, with further discussions on the interpretability of results. In Section 6, we
conclude the article.

2 RELATEDWORK

In this section, we will briefly provide a comprehensive review of the relevant approaches. Specifi-
cally, we group the related works into four lines of literature: Drug Recommendation System, Pack-
age Recommendation System, Graph Neural Networks, and Discrete Data Generation.

2.1 Drug Recommendation System

Recommendation systems have been widely used in a variety of applications like social network-
ing and e-commerce. The methods can be broadly classified into two categories, respectively,
neighborhood-based collaborative filteringmethods based on similar users or items [1], andmodel-
based methods, particularly latent factor models that factorize the user-item matrix into user
factors and item factors [27]. Current recommender systems have been further advanced by the
significant contribution from deep learning [12, 21, 60, 64, 72], where user preferences and item
characteristics can be learned in deep architectures. For example, by replacing the inner product
in the matrix factorization methods with a neural architecture that can learn an arbitrary function
from data, He et al. [21] present Neural network-based Collaborative Filtering (NCF).
Furthermore, to provide more accurate, diverse, and explainable recommendations, many ef-

forts have been made beyond modeling user-item interactions and taking side information into
account. For example, Wang et al. [56] investigate the utility of knowledge graph (KG) and pro-
poses a new method named Knowledge Graph Attention Network (KGAT), which explicitly
models the high-order connectivities in KG in an end-to-end fashion. Based on these technologies,
some methods focusing on drug recommendation have been put forward. For example, Zheng et
al. [78] introduce an LDA-based contextual collaborative model called Medicine-LDA to integrate
the multi-source information. Zhang et al. [71] construct a heterogeneous graph that includes pa-
tients and drugs, and describes a novel recommendation system based on label propagation. In
recent years, some researchers have further incorporated external knowledge into the design of
their models. For example, Zhang et al. [74] utilize a recurrent decoder to model label dependen-
cies and incorporates external knowledge into the design of the reinforcement reward. Shang et
al. [46] propose to integrate the drug-drug interactions knowledge graph by a memory module
implemented as a graph convolutional networks, and models longitudinal patient records as the
query. Shang et al. [45] propose to utilize structural knowledge like clinical ontology to learn bet-
ter representation called tree embedding by utilizing the ancestors’ information. Wang et al. [54]
propose to jointly embed diseases, drugs and patients into a shared lower-dimensional space, and
decomposes the drug recommendation into a link prediction process. However, the studies on
drug interaction are not thorough enough. Different from the prior arts, our method can capture
the drug interaction explicitly and utilize the external knowledge personally.

2.2 Package Recommendation System

Most recommendation research concentrates on recommending one item to one user at a time.
However, in many real-world scenarios, the platform needs to show users a set of items, in other
words, a package (or a bundle). For example, modern e-commerce websites and online service busi-
nesses, e.g., Amazon, Taobao, Steam, and Netflix, develop new applications [3, 42, 49, 63], which
recommend and sell a list of packages rather than a list of items. Bai et al. [3] propose that a package
recommendation system is beneficial to both customers and sellers. For customers, high-quality
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packages broaden their interests and indicate the complementary products directly. For sellers,
they are bundling increases per customer transaction. Therefore, several efforts have been made
to solve this problem. Some studies turn this problem into optimization problems like 0-1 Knap-
sack problem, and provide some approximate solutions due to the NP-Hardness [15, 28, 41, 79].
Liu et al. [36] put forward a Tourist-Area-Season topic model and proposes a cocktail approach
on personalized travel package recommendation. Bai et al. [3] propose a bundle generation net-
work that decomposes the problem by determinantal point processes. Pathak et al. [42] develop a
model that utilizes the trained features of an item recommendationmodel to learn the personalized
ranking over bundles. Chen et al. [10] contribute a neural network solution based on factorized at-
tention network to aggregate the item embeddings in a package. Chang et al. [9] propose a model
based on graph neural network, which explicitly models the interaction and affiliation between
users, bundles, and items by unifying them into a heterogeneous graph. However, these models
neglect the different types of interactions between items, and most of these models are discrim-
inative models, which prevents them from capturing satisfactory performance for drug package
recommendation.

2.3 Graph Neural Networks

As shown in Reference [62], deep learning has revolutionized many machine learning tasks in
recent years, ranging from image classification and video processing to speech recognition and
natural language understanding. The data in these tasks are typically represented in the Euclidean
space. However, there is an increasing number of applications where data are generated from non-
Euclidean domains and represented as graphs with complex relationships and interdependencies
between objects. Recently, many studies on extending deep learning approaches for graph data
have emerged [11, 30–32, 61, 67, 70, 73]. Unlike standard neural networks, GNNs retain a state
representing information from its neighborhood with arbitrary depth. For example, Kipf et al. [26]
present graph convolutional network (GCN) for semi-supervised learning on graph data via
an approximation of spectral graph convolutions. Li et al. [34] propose Gated Graph Neural

Networks (GG-NNs), which is an adaptation of GNNs that is suitable for both non-sequential
and sequential outputs. Hamilton et al. [19] present GraphSAGE to generate node embeddings by
sampling and aggregating features from the local neighborhoods of nodes. Velivckovic et al. [51]
present graph attention networks (GATs) that leverage masked self-attentional layers to ad-
dress the shortcomings of methods based on graph convolutions. Gilmer et al. [17] further present
that the essence of existing GNNs is to learn a message-passing algorithm and an aggregation
procedure to compute a function of the entire input graph, and reformulate existing models into a
single common framework called MPNNs. With the strong power of the learning structure, GNNs
have beenwidely applied inmany fields. For example, Zhang et al. and Li et al. [33, 69] utilize graph
data and graph neural networks for competitive analysis. Liu et al. [38] propose a deep model to
integrate structural and temporal social contexts to address the dynamic social-aware recommen-
dation task. Wang et al. [57] exploit the user-item graph structure by propagating embeddings,
which leads to the expressive modeling of high-order connectivity.

2.4 Discrete Data Generation

Deep generative models have recently drawn significant attention, and the ability to learn over
large-scale data endows them with more potential and vitality [5]. Salakhutdinov et al. [44] con-
tribute an efficient learning procedure for fully general Boltzmann machines. Bengio et al. [6]
develop a denoising autoencoder that learns the data distribution in a supervised learning fashion.
Recently, the most popular generative models are Generative Adversarial Nets (GANs) [18, 73]
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and Variational AutoEncoder (VAE) [25], where Goodfellow et al. [18] propose to train a gen-
erative model and a discriminative model by a min-max game and Kingma et al. [25] combine
deep learning with stochastic variational inference. Both GANs and VAE have gained striking suc-
cesses in continuous data generation, e.g., natural image generation[50, 58]. However, most of
these generative models are designed to adjust the output continuously, which does not work on
discrete data generation, e.g., text and set generation. To solve this problem, RNN-based models
like LSTM [22] and GRU [13] are most commonly used, where the models generate one word or
item at one time step [47, 66]. Yu et al. [68] propose that the discrete outputs from the generative
model in GANs make it challenging to pass the gradient update from the discriminative model
to the generative model. Furthermore, Yu et al. [68] solve this problem by developing SeqGAN
to model the data generator as a stochastic policy in reinforcement learning (RL) and using
Monte Carlo search to calculate the reward for the intermediate state-action steps. Inspired by
this, Liu et al. [37] improve the previous image captioning methods by using Monte Carlo rollouts
instead of mixing MLE training with policy gradient (PG). Dai et al. [14] further contribute an
image description method based on conditional GAN, which encourages not only fidelity but also
naturalness and diversity. Yang et al. [65] propose that the RNN models are not suitable for the
set generation task, since RNN models are trained with the maximum likelihood estimation

(MLE)method and the cross-entropy loss function, which relies on strict order. Therefore, Yang et
al. [65] develop a novel set generation model based on RL, which not only captures the correlations
between items but also reduces the dependence on the item order. Zhao et al. [75, 76] propose to
utilize reinforcement learning for video question answering.
In this article, we follow some outstanding ideas in the above works according to the properties

of the drug package recommendation task. Along this line, we develop a new end-to-end frame-
work named DPG to generate drug packages based on RNN and RL. Along this line, we further
utilize MPNN to integrate drug interaction information and a mask layer to capture the impact
of the patient’s condition on the drug package generation process. Therefore, DPG can not only
capture the drug interaction information in the package generation process but also overcome the
shortness of discriminative models.

3 PRELIMINARIES

In this section, we first introduce the two datasets used in our study, respectively, our private
dataset named APH, which comes from a first-rate hospital in China, and a public dataset named
MIMIC-III [23]. Then, we propose the problem formulation of drug package recommendation.

3.1 Data Description and Preprocessing

3.1.1 The APH Dataset. Our private dataset named APH used in this article comes from the
electronic medical record database of a first-rate hospital in China. As shown in Figure 2, each
medical record contains the following information:

• Demographics.Demographics are formatted data including basic patient information, such
as patient’s gender, age, type of medical insurance, whether surgery has been performed, and
so on. This information provides guidance for doctors to prescribe, for example, some drugs
are not suitable for children, while some drugs are only covered by certainmedical insurance,
and so on.
• Laboratory results.A laboratory test is a procedure in which the hospital takes a sample of
the patient’s body fluid or tissue to get information on the patient’s health. The laboratory
results are shown as the patient’s values and normal values for laboratory items. For example,
“glucose value: 77 mg/dL, normal value: 65-99 mg/dL.”
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Fig. 2. An example of the medical record in our private dataset. Each medical record contains demographics,

laboratory results, admission notes, and drugs corresponding to a specific patient.

• Admission notes. An admission note is part of a medical record that documents the pa-
tient’s status, including physical examination findings, reasons why the patient is being ad-
mitted for inpatient care to a hospital, and the initial instructions for the patient’s care.
• Drugs. This information includes all of the drugs used during the patient’s hospital stay.

To integrate and utilize the above multi-source heterogeneous data, we conduct the following
preprocessing steps. First, for the demographics, since each type of information may correspond
to too many values, e.g., the age information may correspond to more than one hundred values, so
we propose some classification methods as shown in Table 1. Based on these classification meth-
ods, we convert demographics into documents, e.g., “Gender: Male, Age: Agedness.” Second, for
the laboratory results, we divide the results into three levels, respectively, normal, abnormally
high and abnormally low, according to the given typical values. We then extract all abnormal test
results (abnormally high and low) and convert them into documents, e.g., “glucose value: abnor-
mally high, lipid panel: abnormally high.” After that, we merge the demographic documents and
laboratory result documents, namely, disease documents. Finally, we remove all the punctuation
and meaningless characters for the admission notes and adjust all of the admission notes in the
dataset to the same length by padding and cut-off.
To study the interaction between drugs, we collect data from two large online pharmaceutical

knowledge bases, i.e., DrugBank1 and YaoZhi,2 where users can check drug properties and drug-
drug interaction. The drug interaction information in these two databases is stored in text format
based on certain templates. We further classify the templates into three categories with the help
of domain experts, respectively, No Interaction, Synergism, and Antagonism. Specifically, No Inter-
action means there is no interaction between two drugs, Synergism means combining two drugs
can lead to enhanced drug effect, and Antagonism is the opposite. Table 2 shows some examples of

1https://go.drugbank.com/releases/latest.
2https://db.yaozh.com/interaction.
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Table 1. Different Classification Methods for Different Types of

Demographics Information

Information type Classification method

Gender Male, Female

Age
0~3 years old as infant, 4~12 as early youth, 13~45 as youth,

46~59 as middle age, 60+ as agedness
Insurance High quality, Low quality, Self-paying, Unknown
Operation Yes, No
Anesthesia General, Local, No

Table 2. Examples of Drug Interaction Labeling

Drug A Drug B Description Classification Direction

Amoxicillin Oseltamivir No Interaction No Interaction Bidirection

Dipyridamole Valsartan
Dipyridamole may increase

the antihypertensive
activities of Valsartan.

Synergism A to B

Repaglinide Doxepin
Doxepin may decreas
the hypoglycemic

activities of Repaglinide.
Antagonism B to A

There are three types of interaction and the interaction can be directed.

different drug interactions. Note that the interaction can be directed, for example, if drug A can in-
crease the effectiveness of drug B, then the direction is from A to B. Moreover, for most drug pairs,
we cannot confirm whether there are any interactions between them, so we leave them unlabeled.

3.1.2 The MIMIC-III Dataset. The MIMIC-III dataset is a publicly available dataset consisting
of medical records of 40K intensive care unit (ICU) patients over 11 years. Following References
[46, 55], we use the diagnose codes and procedure codes to reflect the condition of patients, and
the dataset was preprocessed similarly to Reference [55]. Note that there are no admission notes in
the MIMIC-III dataset, so we only converted the diagnosis codes and procedure codes into disease
documents. We also utilize the interaction data proposed in Section 3.1.1 for capturing the drug-
drug interaction in MIMIC-III.

3.2 Problem Formulation

Based on the above EMR and drug interaction data, here we introduce the problem formulation
of drug package recommendation. For facilitating illustration, Table 3 lists some important math-
ematical notations used throughout this article.
Suppose there are N patients andM drugs in the training set. Based on the above preprocessing

method, for patient i , we can construct the disease document and turn it into one-hot encoding
form asWi = {wi,1,wi,2, . . . ,wi,p }, wherewi, · is the 0/1 indicator value for a demographic feature
or a lab result. In addition, we can formulate the admission note as Ti = {ti,1, ti,2, . . . , ti,q }, where
ti, · is a word in the processed admission note. In this way, the patient i can be expressed as a
patient description Ui = {Wi ,Ti }. Note that for the MIMIC-III dataset, there are no admission
notes and the patient description Ui is just equal toWi . We also have the drug package Pi ={
di,1,di2 , . . . ,di,s

}
, where di, · is a drug that patient i used. Moreover, based on the labeled drug

interaction data, we can construct the drug relation matrix R ∈ RM×M , where Ri j represents the
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Table 3. Mathematical Notations

Symbol Description

N ,M Number of patients and the number of drugs
K Average size of drug packages
L Layer number of MPNN
S Set of all the drugs appeared in the dataset
G Drug interaction graph of set S
R Drug relation matrix
C Candidate drug package set
Pi Drug package of patient i
Wi Disease document of patient i
Ti Admission note of patient i
Ui Patient description of patient i
Θ Model Parameters
n Size of the candidate drug package set
di ith drug in the entire drug set
di, · Drug in the drug package of patient i
wi, · Indicator value in the disease document of patient i
ti, · Word in the admission note of patient i
d Drug embedding for the corresponding drug
ri j Representation for the interaction between di and dj
[·| |·] Concatenation of two vectors

MLP (·) Multilayer Perceptron with ReLU Activation Function

interaction between di and dj . Ri j is initialized as follows:

Ri j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 no interaction between di and dj ,
1 the interaction between di and dj is Synerдism,
2 the interaction between di and dj is Antaдonism,
−1 the interaction between di and dj is Unknown.

(1)

Note that the direction is from di to dj . Along this line, the problem of drug package recommen-
dation can be formulated as:

Definition 1 (Drug Package Recommendation). Given the patient descriptions {U1, . . . ,UN }with
the corresponding drug packages {P1, . . . ,PN }, and the drug relation matrix R, the goal of drug
package recommendation is to get a personalized generator д, which can generate a candidate
drug package set C = {P1,P2, . . . ,Pn } and pick out the most suitable drug package P ∈ C based
on each patient descriptionU .

In this way, we formulate the drug package recommendation system as a generative model,
which makes the problem essentially different from our preliminary work [77]. Moreover, instead
of just generating one package for one patient, we force д to generate a candidate drug package set
C at first. The rationale behind this is that in the real-world clinical treatment process, the doctors
may not only hope the drug recommendation system can indicate the drugs that are most likely to
be used but also provide a variety of possible treatment plans, especially those that include some
unpopular drugs. To provide the doctor with the most excellent help, the candidate drug packages
should have the following merits: (1) Accuracy, which means the most suitable drug package

ACM Transactions on Information Systems, Vol. 41, No. 1, Article 3. Publication date: January 2023.
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Fig. 3. A framework overview of the drug package generation model. Orange nodes indicate drugs. Green

boxes indicate neural networkmodels. Pink box indicates the interaction extractor. Yellow rectangles indicate

drug embedding. Dark grey rectangles indicate patient embedding and the dark grey rectangles with dots

indicate the corresponding mask vectors.

P ∈ C should be as accurate as possible. (2) Comprehensiveness, which means all the drugs
contain in C should cover the drugs that are actually used as much as possible. (3) Diversity,
which means the packages in C should be as diverse as possible to provide more possible options
for the doctors to consider. We will discuss more about how to generate the candidate set C and
how to evaluate the generation result in the following sections.

4 TECHNICAL DETAILS

In this section, we will introduce the framework of our model in detail. As shown in Figure 3, our
framework mainly consists of three components, i.e., message passing on drug interaction graph,
patient encoder, and drug package generation. Specifically, we first construct the drug interaction
graph based on the drug relation matrix R and design a message-passing neural network to get
the drug embedding and capture the interaction between drugs. Then, we get the embedding of
the patient descriptions. Finally, we propose a novel drug package generation model, which ex-
plicitly captures the effect of drug interaction and the influence of patient condition. Besides, we
also propose the training and testing methods of our DPG model based on maximum likelihood
estimation and policy gradient.

ACM Transactions on Information Systems, Vol. 41, No. 1, Article 3. Publication date: January 2023.
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4.1 Message Passing on Drug Interaction Graph

Compared with traditional item recommendation, the core problem of drug package recommen-
dation is how to capture the interaction between drugs. Therefore, in this section, we propose to
utilize graph models to solve this problem. To be specific, we first present a method to construct a
drug interaction graph. Then, we formulate the message-passing framework, which will be further
utilized for the drug package generation task.

4.1.1 Drug Interaction Graph Construction. For the set S of all the drugs in our dataset, we
define a corresponding drug interaction graph G = {V,E}, whereV is the node set and E is the
edge set. Each specific node v ∈ V is associated with corresponding drug d and corresponding
node embedding v, which is randomly initialized. Furthermore, to fuse the information of the drug
relation matrix R, we propose the following criterion to define the topology structure of G. For
nodes v,u, if Rvu � −1, which means this drug paired has been labeled, then edge evu exists.
Otherwise, the edge evu does not exist.

4.1.2 Message Passing on Drug Interaction Graph. We propose to exploit the MPNN [17] frame-
work for making use of the drug interaction graph constructed in the last section. MPNN is a gen-
eral approach to describe GNNs, which inductively learns a node representation by recursively
aggregating and transforming the feature vectors of its neighboring nodes. A per-layer update of
the MPNN model in our setting involves message-passing, message aggregation, and node repre-
sentation updating, which can be expressed as

m
(l )
vu = MESSAGE

(
h
(l−1)
u , h

(l−1)
v , evu

)
, (2)

M
(l )
u = AGGREGATION

({
m

(l )
vu , evu

}
| v ∈ N (u)}

)
, (3)

h
(l )
u = UPDATE

(
M (l )

u , h
(l−1)
u

)
, (4)

where m
(l )
vu is the message vector passing from v to u, h(l )

u is the representation of node u on
the layer l ; evu is the attribute corresponding to edge evu . Note that evu is a vector. N (u) is the
neighborhood of node u from where it collects information to update its aggregated message Mu .
Based on the MPNN framework, we propose our message-passing process on the drug interaction
graph as follows:

e
(l )
vu = MLP (l )

( [
h
(l )
u | |h(l )

v

] )
, (5)

m
(l )
vu =W

(l−1)
1 e

(l−1)
vu , (6)

M
(l )
u =

∑
v ∈N (u )

m
(l )
vu , (7)

h
(l )
u = MLP

(
W (l−1)

0 h
(l−1)
u +M

(l )
u

)
, (8)

where h
(0)
u is initialized by corresponding node embedding vu andW denotes the model’s param-

eters to be learned. MLP (l ) is the multilayer perceptron utilized in lth layer to calculate the edge
attributes based on node representation. After L layer of the message-passing process, we can get

the node representation h
(L)
u , edge attribute e

(L)
vu and multilayer perceptronMLP (L) . h

(L)
u is the drug

embedding for the corresponding drug du , i.e., du = h
(L)
u . e

(L)
vu is the representation for the interac-

tion between the corresponding drugs du and dv based on the interaction feature extractorMLP (L) .

We also express e
(L)
vu as êvu andMLP (L) asMLPinter for facilitating illustration. Note that the drug
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embeddings and the MLPinter model will be further utilized in the following sections, and all the
models and parameters mentioned in this section can be trained simultaneously with the drug
package generator.

4.1.3 Learning with Edge Classification. In the above message-passing process, we get the edge
representation êvu based on the drug embeddings and the interaction feature extractor MLPinter .
We further propose that the edge representation êvu should contain the information about the in-
teraction type. Along this line, we define the transfer matrix Q ∈ RD×3 to transform the edge rep-
resentation êvu into classification probabilities, where D is the dimension of êvu . Specifically, we
can calculate the three-dimensional classification probability vector ê�vuQ, where each dimension
in this vector reflects the probability for the corresponding interaction type following equation 1.
Note that the Unknown type does not exist in the drug interaction graph. Finally, we can form the
cross-entropy loss function for the MPNN on the drug interaction graph, which aims to force the
edge attribute êvu to contain the interaction type information as follows:

Lдraph = −
∑

u,v ∈G
ln
(
so f tmax

(
ê�vuQ

)
Ruv

)
. (9)

4.2 Patient Encoder

The next step of drug package generation is getting the embedding of the patients. As shown in
Section 3.2, a patient’s description consists of two heterogeneous parts. Therefore, we propose a
hybrid method to get the patient embedding u based on patient descriptionU = {W,T }, which
can be split into two steps. To be specific, in the first step, we extract the feature of the patient’s
disease document by MLP as

mw = MLP (W ) . (10)

In the second step, we associate each word tk in patients’ admission notes with a word embed-
ding vector xk . By this way, we can convert T to a sequence of vectors (x1, x2, . . . , xq ). Then, we
input the sequence into char-GRU3 and get the final time step output hq as the embedding of T .
The patient embedding u is the concatenation of the two parts:

u = [mw | |hq]. (11)

Furthermore, we calculate the personalized mask vector based on the patient embedding as
follows:

m = σ (MLP (u)) , (12)

where σ (·) is the sigmoid function. The mask layer projects the real numbers in u to the range 0
to 1, which can be regarded as a personalized feature selection process.

4.3 Drug Package Generation

After getting the drug and edge embedding based on the drug interaction graph and the embed-
ding of the patient description, we can further design our model for drug package generation.
We formulate the drug package generation as a sequence generation process, and utilize an
RNN-based model to solve this problem. In each step of the RNN generation, we exploit a mask
layer to capture the impact of the patient’s condition on the drug interaction. To train the sequence
generation model, we first propose to sort the drugs by frequency in descending order, and take
the result of Maximum Likelihood Estimation (MLE) as the loss function. However, as shown
in Reference [52], the order of the items in a sequence has a significant impact on the performance
of the sequence generation model. Obviously, it is more appropriate to treat drug packages as

3Different from our preliminary work, we utilize GRU instead of LSTM, since the performance of GRU is a little bit better.
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unordered sets rather than ordered sequences. Therefore, following Reference [65], we further
utilize deep reinforcement learning to reduce the dependence of the model on the sequence order.

4.3.1 Drug Package Generation with Maximum Likelihood Estimation. For a patient description
U , we can get the patient embedding u as shown in Section 4.2. Then, in this section, we formulate
the drug package generation problem as finding an optimal drug sequence that maximizes the
conditional probability, which is calculated as follows:

p (d1, . . . ,dT | u) =
T∏
t=1

p (dt | d1, . . . ,dt−1, u) . (13)

To convert the drug packages to drug sequences, we first sort the drugs in each drug package
according to the frequency of the drugs in the training set. High-frequency drugs are placed in the
front. In addition, the bos and eos symbols are added to the head and tail of the drug sequences,
respectively. Then, if we choose GRU as the sequence generation model, then we could input u
as the initial hidden state. We can calculate the conditional probability p (dt+1 | d1, . . . ,dt , u) by
simply inputting the corresponding drug embedding to the GRU unit at each time step, and get
the output probability distribution over the drug space at time step t as

dt+1 ∼ so f tmax (Woht ) , (14)

where ht is the output of the GRU cell at time step t . However, in this simple method, the effect
of the drug interaction and the influence of the patient condition are all captured implicitly by
the hidden state h of the GRU model, which severely reduces the expressive ability and the inter-
pretability of the model. Therefore, in our DPG framework, we propose to utilize the interaction
feature extractor in Section 4.1.2 and the mask layer to capture the effect of the drug interaction
and the influence of the patient condition explicitly.

Supposing that our DPG model has generated a drug sequence y = {d1,d2, . . . ,dt } at time step t .
If we want to capture the drug interaction effect during the generation process, then a straightfor-
ward method is to convert the drug sequence y to a complete graph, where all drugs are connected
with each other, and calculate the drug interaction vectors as the edge attributes of the graph. How-
ever, this will make the calculation time complexity of time step t increases from O (1) to O (t2),
which is unacceptable for sequence generation task. Therefore, we propose to capture the drug
interaction that is only related to dt at time step t . In this way, the time complexity of time step t
decreases from O (t2) to O (t ). Furthermore, with the update of the hidden state and the gate vec-
tors in the GRUmodel, the drug interaction information before time step t can be saved effectively.
Specifically, at time step t , the drug interaction vector it can be calculated as follows:

it = MLP 

�
t−1∑
k=1

m � MLPinter ([dk | |dt ])� , (15)

where m is the mask vector calculated by equation 12. � represents the element-wise product
of two vectors. MLPinter is the interaction feature extractor in Section 4.1.2. MLPinter ([dk | |dt ])
captures the interaction information between dk and dt , which is further updated by the mask
vector m. In this way, the model can capture the personalized influence of the patient condition
on the drug interaction effect. Based on the drug interaction vector, the update process of the GRU
unit in our DPG framework can be formulated as follows:

rt = σ (Wdr [dt | |it ] +Whrht−1 + br ) ,
zt = σ (Wdz [dt | |it ] +Whzht−1 + bz ) ,

h̃t = tanh (Wdh [dt | |it ] +Whh (rt � ht−1) + bh ) ,

ht = (1 − zt ) � ht−1 + zt � h̃t .

(16)
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Furthermore, another problem of the RNN-based model is that the model will generate repeated
items during the generation process. However, there is no repeated drugs in a drug package. There-
fore, in our DPG framework, we propose to get the output probability distribution over the drug
space at time step t as

dt+1 ∼ so f tmax (Woht +Mt ) , (17)

where Mt ∈ RM is the mask vector, which is used to prevent the GRU model from generating
repeated drugs as

(Mt )i =

{
−∞ if the ith drug has been predicted,
0 otherwise.

(18)

Finally, the loss function for drug package generation with MLE loss can be formulated as fol-
lows, where d∗t is the ground-truth drug at time step t :

LMLE = −
T∑
t=1

log(so f tmax (Woht−1 +Mt−1)d∗
t
). (19)

4.3.2 Drug Package Generation with Policy Gradient. Althoughmaximum likelihood estimation
is extensively used in sequence generation tasks, Reference [52] proves that the order has a great
impact on the performance of the sequence generationmodel. Training based onMLE is reasonable
only when there exists a strict order in the output items and this order is known in practice, e.g.,
text generation [47], music generation [8]. However, drug packages are naturally unordered, which
are more appropriate to be treated as unordered sets rather than ordered sequences. To solve this
problem, we propose to utilize RL technologies to reduce the dependence of sequence generation
on the item order.
RL technologies have been widely used to improve the performance of RNN-based models for

sequence generation tasks, e.g., text generation [68], image caption [37]. In these works, an RNN-
based sequence generation model is formulated as an agent in the RL framework. At time step t ,
the state s is the currently produced tokens, and the action a is the next token to select based on
the stochastic policy defined by the parameters θ of the generation model. The methods to get the
reward r can be divided into two categories. The first method is getting the reward from specific
evaluation metrics, e.g., BLEU for text generation, while the second one is getting the reward from
another discriminator model following the GANs [18] framework. In this work, we propose to
utilize the first method to get the reward, since we find that GANs are not suitable for the drug
package generation task, and we will give a more detailed discussion about this later. Based on
the above definitions, given a patient embedding u, the goal of the RL model is to minimize the
negative expected reward, which can be estimated with a single sample as

L(θ ) = −Ey∼pθ (u)[r (y)] ≈ −r (ỹ), (20)

where ỹ = {d1,d2, . . . ,dT } and dt is the drug sampled from the model at the time step t .
A core problem is how to calculate the reward r (y). The design of the reward function de-

pends on the characteristic of the task. For example, for the unsupervised text generation task,
the generator needs to output sequences similar to some real-world sequences without ground-
truth. Therefore, Yu et al. [68] utilize a discriminator model to calculate the reward following the
GAN framework. However, for the drug package generation task, each patient has a corresponding
ground-truth drug package given by human experts. To capture the prior human knowledge, the
reward function should encourage the generation model to output drug packages that are exactly
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the same with the ground-truth packages. Therefore, we design the reward as the F1 score as

Precision (y,P ) =
��y ∩ P����y�� , (21)

Recall (y,P ) =
��y ∩ P��
|P | , (22)

r (y) = F1 (y,P ) =
2 ∗ Precision (y,P ) ∗ Recall (y,P )
Precision (y,P ) + Recall (y,P ) , (23)

where y is the drug sequence generated by the model and P is the corresponding ground-truth
drug package. Note that the bos and eos symbols in y are deleted before calculation. Since the
calculation of the F1 value is independent of the order, the generation model is free from the strict
restriction of item order in sequences.
To compute the gradient ∇θL(θ ), we utilize the Policy Gradient (PG) [48, 59] method. Policy

gradient performs gradient descent by calculating the expected gradient of a non-differentiable
reward function as follows:

∇θL(θ ) = −Ey∼pθ (u)
[
r (y) ∇θ logpθ (y | u)

]
≈ −r (ỹ) ∇θ logpθ (ỹ | u) .

(24)

Again, the gradient can be approximated using a single sample in practice. Furthermore, to reduce
the variance of the gradient estimate, we can add a baseline b to Equation (24) as

∇θL(θ ) ≈ − (r (ỹ) − b) ∇θ logpθ (ỹ | u) , (25)

where the baseline b can be any function b that only depends on state θ . Reference [43] further pro-
poses an optimization approach for sequence generation called self-critical sequence training

(SCST). The rationale behind this is that rather than estimating the baseline b by another model,
we can just utilize the output of the sequence generator with its own test-time inference algorithm.
Specifically, for patient embedding u, we get the baseline output drug sequence ŷ by maximizing
the output probability distribution of the same model at each time step, essentially performing a
greedy search on the same model. The gradient ∇θL(θ ) then becomes

∇θL(θ ) ≈ − (r (ỹ) − r (ŷ)) ∇θ logpθ (ỹ | u) . (26)

Finally, based on Equations (13) and (14), we can formulate the loss function for the reinforce-
ment learning as follows:

LRL = (r (ŷ) − r (ỹ)) logpθ (ỹ | u)

= (r (ŷ) − r (ỹ))
T∑
t=1

logp (dt | d1, . . . ,dt−1, u)

= (r (ŷ) − r (ỹ))
T∑
t=1

log(so f tmax (Woht−1 +Mt−1)dt ).

(27)

4.4 Training and Testing Strategies

Here, we introduce the training and testing strategies of our DPG model, including how to train
the model and how to generate the candidate drug package set and select the best drug package
based on our model.
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ALGORITHM 1: Training method for DPG

Input: Set of patient descriptionsUk and drug packages Pk , drug relation matrix R,
hyper-parameters α , β , λ1 and λ2, batch sizem, pretraining epoch number n′, training
epoch number n

Output: Model parameters Θ
1 Construct the drug interaction graph G based on R;
2 Construct the DPG framework with an MPNN model for G, a patient description embedding

model, and a GRU model for package generation;

3 Initialize the parameters in DPG with random weights Θ;

4 for i = 1 to n′ do
5 Randomly selectm patient descriptions and corresponding drug packages;

6 Get the drug embeddings and interaction feature extractor from the MPNN model;

7 Get the patient embeddings by Equation (11);

8 Initialize the hidden state of the GRU model by the patient embeddings;

9 Input eos to the GRU model and generate drug packages;

10 Calculate Lдraph and LMLE based on Equations (9) and (19);

11 Train the DPG model with Lpretrain = LMLE + α ∗ Lдraph + λ1 ∗ ‖Θ‖22;
12 end

13 for i = 1 to n do

14 Use the same method as the pretraining process to get the drug embeddings, patient

embeddings and generate drug packages;

15 Generate baseline drug package by greedy search;

16 Calculate Lдraph and LRL based on Equations (9) and (27);

17 Train the DPG model with LDPG = LRL + β ∗ Lдraph + λ2 ∗ ‖Θ‖22;
18 end

4.4.1 Training Strategies. For learning the parameters of DPG, we propose to train the MPNN
model, the patient description embedding model, and the drug package generation model simulta-
neously with a hybrid loss function. Specifically, we first pretrain the DPG model with MLE loss
as

Lpretrain = LMLE + α ∗ Lдraph + λ1 ∗ ‖Θ‖22 , (28)

where α is a hyper-parameter, which is used to control the trade-off between LMLE and Lдraph ,
and Θ is the parameter set. L2 regularization is applied to prevent overfitting. Then, we train the
DPG model with policy gradient as follows:

LDPG = LRL + β ∗ Lдraph + λ2 ∗ ‖Θ‖22 , (29)

where β is also a hyper-parameter similar toα . Algorithm 1 describes the complete trainingmethod
for our DPG model.

4.4.2 Testing Strategies. For the testing stage, multiple strategies are utilized as follows:

• Greedy Search, which could be the simplest recommendation method for our RNN-based
model, where the model generates a drug package by maximizing the output probability
distribution at each time step. However, the greedy search can only generate a candidate
drug package set C with one drug package.
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• Beam Search, which could generate multiple drug packages. Specifically, given the beam
size n, the model keeps track of n states rather than just one. At each iteration, all the suc-
cessors of all n states are generated, and the model selects the n best successors from the
complete list. In this way, the model can generate a candidate drug package set C with n
drug packages.
• Neighbor Search, which could be intuitive as existing drug packages given by human ex-
perts in the EMR dataset may also be beneficial for clinic treatment to other similar patients.
To that end, we generate drug packages from the most similar patients based on the cosine
similarity between patient embeddings.

Note that it is meaningless to generate a candidate set that only contains existing drug pack-
ages. Therefore, in neighbor search, the candidate set consists of both existing drug packages and
packages generated by beam search simultaneously, and the proportion is a hyper-parameter.
Given the candidate set C, another important task is to select the best package from C. For

beam search, we propose to select the best package based on the sequence probabilities and length
normalization as follows:

ybest = argmax
y

1

T τ

T∑
t=1

logp (dt | d1, . . . ,dt−1, u) , (30)

whereT is the length of the sequence. Since the vanilla beam search has an undesirable effect where
it unnaturally tends to prefer a very short result, we normalize the result by dividing T τ , where τ
is a hyper-parameter to control the punishment strength. However, this method cannot be utilized
for the candidate set given by neighbor search, since the existing packages do not have sequence
probabilities. Therefore, the final output package is selected by our preliminary discriminative
model DPR [77] in neighbor search. The discriminative model is pretrained before utilization, and
the parameters are not tied with our DPG model.

5 EXPERIMENTS

In this section, we evaluate the proposed model with a number of competitive baselines. Mean-
while, we will further present the discussions and case studies on drug package generation.

5.1 Data Statistics

Detailed statistics4 of our APH dataset and the MIMIC-III dataset are shown in Table 4. Note that
most of the drug packages contain synergistic drug pairs. Meanwhile, about 50% of the drug pack-
ages contain antagonism drug pairs, which indicates the necessity of personalized drug interac-
tion modeling. We further found that the distribution of drugs in the APH dataset shows the
long-tail distribution. As shown in Figure 4, most drugs are used infrequently. However, these
low-frequency drugs may be critical for the treatment of certain rare diseases. Therefore, it is
essential for our model to capture the characteristics of both high-frequency and low-frequency
drugs.

5.2 Experimental Settings

Here, we introduce the detailed settings of our experiments, including the baseline models and
evaluation metrics and the details of the training stage.

4The private dataset is a little different from the dataset we used in Reference [77] due to further data collection and

maintenance.
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Table 4. Statistics of the Datasets

Description APH MIMIC-III

# of records 156,483 24,537
# of drugs 1,007 301

# of words in disease document 1,242 2,892
average size of drug packages 13 18.3

# of aligned drugs 565 64
# of drug pairs with No Interaction 2,560 0
# of drug pairs with Synergism 22,986 1,580
# of drug pairs with Antagonism 6,389 398

# of drug packages containing synergism drug pairs 118,758 19,188
# of drug packages containing antagonism drug pairs 86,212 11,709

Fig. 4. The statistics of drug frequency in the APH dataset.

5.2.1 Baselines and Evaluation Metrics. To evaluate the performance of our models for drug
package generation, we selected several state-of-art methods as baselines. Specifically, we chose
two popular traditional recommendation approaches:

• NCF [21]: NCF is a state-of-the-art deep-neural-network-based recommendation system,
which replaces the inner product in matrix factorization with a neural architecture. This
model recommends top-K drugs as packages for the patients in test sets based on the patient
embeddings, where K is the average size of drug packages.
• NN: This method utilizes the pretrained patient embeddings based on NCF, and returns
the drug package corresponding to the Nearest Neighbor (NN) by calculating the cosine
similarity of patient embeddings.

Then, we chose several state-of-art discriminative package recommendation models as follows:

• Package2vec:Wan et al. [53] propose to utilize Item2vec [4] for enhancing the item embed-
dings in a package, and we extend Item2vec following Reference [29] to get the embedding
of a package. NCF framework and BPR loss are utilized for training the package recommen-
dation model.
• LDA [7]: This method utilizes the LDA model to get the embedding of a package and uses
the same framework as Package2vec to recommend packages.
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• BR [42]: BR is a package recommendation method that aggregates item latent vectors to
get the package embeddings based on package size and item compatibility.
• DAM [10]:DAM is a neural network architecture for package recommendation that utilizes
factorized attention network to get the embedding of packages.
• DPR [77]: DPR is our preliminary work for drug package recommendation, which consid-
ers the interaction effect between drugs, and the interaction effects could be affected by
patient conditions. The DPR framework has two variants, i.e., DPR on Weighted Graph

(DPR-WG) and DPR on Attributed Graph (DPR-AG).

Finally, several generative drug recommendation models are chosen as follows:

• GRU-MLE: This model is a simplified variant of our models, which only uses the patient
embedding as the initial hidden state and utilizes GRU as the generator. The model is trained
by maximum likelihood estimation.
• GRU-F: This model uses the same method as GRU-MLE to generate drug packages. The
difference is that the model is pretrained by maximum likelihood estimation, and further
trained by policy gradient, where the reward is given by F1 score.
• GRU-DPR: This model uses the same method as GRU-MLE to generate drug packages. The
model is pretrained by maximum likelihood estimation and further trained by policy gra-
dient. Different from GRU-F, the reward is given by a pretrained discriminative package
recommendation model DPR [77].
• CGAN [14]: Dai et al. [14] propose to utilize a new framework based on Conditional Gen-

erative Adversarial Networks (CGAN) for image captioning. Based on this framework,
this method utilizes GRU as the generator and DPR as the discriminator, and trains the mod-
els following the GAN [18] framework by policy gradient.
• KG-MIML-Net [45]: KG-MIML-Net formulates the medicines prediction problem as a
multi-instance multi-label learning task and solves this problem by an encoder-decoder
model. The patient encoder utilized in KG-MIML-Net is a RNN-based model.
• GAMENet [46]: GAMENet integrates the drug-drug interactions knowledge graph by a
memory module implemented as a graph convolutional network, and models longitudi-
nal patient records as the query. The patient encoder utilized in GAMENet is an MLP
model.
• CompNet [55]: CompNet uses a Relational Graph Convolutional Network (R-GCN)

to encode the drug package at each time step and utilizes reinforcement learning for training.
The patient encoder utilized in CompNet is an MLP model.

It is worth noting that the drug package recommendation is much different from the general
recommendation, since there are no fixed users in our task. Therefore, in all of the baseline meth-
ods, we exploited the patient embedding model proposed in Section 4.2 to get the representation
of patients. Furthermore, different from generative models, which can generate candidate drug
package set following the methods in Section 4.4.2, all the discriminative models can only pick out
the best package from a candidate set that consists of drug packages from 10 most similar patients.
To evaluate the quality of both the candidate sets and the selected best drug packages, different

evaluation metrics were utilized. To evaluate the accuracy, comprehensiveness and diversity of the
candidate set, we utilize the following evaluation metrics:

• Set Precision, Set Recall and Set F1-value (S-Precision, S-Recall, S-F1), which means
calculate the Precision, Recall and F1-value for each drug package in the candidate set, and
calculate the average value to evaluate the accuracy of a candidate set.
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• Coverage, which evaluate the comprehensiveness of a candidate set as follows:

Coveraдe =
| (P1 ∪ P2 ∪ · · · ∪ Pn ) ∩ Pд |

|Pд |
, (31)

where Pд is the ground truth package.
• Diversity, which is defined as 1-Jaccard Similarity over each drug package in the candidate
set as follows:

Diversity =
1

n × (n − 1)
∑

1≤i, j≤n
i�j

(
1 −
|Pi ∩ Pj |
|Pi ∪ Pj |

)
. (32)

Note that each evaluation metric is averaged by the size of the test set. For the evaluation of the
best drug package P ∈ C selected by the model, we propose to calculate the Precision, Recall and
F1-value based on the ground truth package Pд . Furthermore, to evaluate the ability of the models
on recommending low-frequency drugs, we propose to remove the high-frequency drugs in both
the ground truth package and the output package of the model, and calculate the Precision, Recall,
and F1-value again for the evaluation.

5.2.2 Implementation Details. We implemented our model by PyTorch5 and Pytorch
Geometric6 using a GeForce RTX 3090 GPU with 24 GB memory on a Linux machine. The pa-
rameters were all initialized using Kaiming [20] initialization. For the MPNN model on the drug
interaction graph, we set the dimension of drug embeddings as 64. For the patient embedding
model, we set the output dimension of the MLP, the dimension of char embeddings, and the hid-
den size of the GRU as 32, while the dimension of patient embeddings was set as 64. For the drug
package generation model, we set the hidden size of the GRU as 32. For all the MLP models used in
this article, we set the dimension of hidden layers as 128. In the process of model training, we used
the Adam optimizer [24] for parameter optimization. We set the learning rate as 0.001 for pretrain-
ing and 0.0001 for training, and we set the mini-batch size as 1,024. The parameters of baselines
were set up similarly to our method and were all tuned to be optimal to ensure fair comparisons.
For the dataset splitting, we divided our dataset into 80%/10%/10% training/validation/test, and we
report performance on the test set for the model that performed best on the validation set.

5.3 Discussions

5.3.1 Overall Performance. To demonstrate the effectiveness of our drug package recommen-
dation framework, we compared DPG with all the baselines. First, we compared the ability of the
models to recommend the best drug package for the patient. We selected greedy search as the
generation method for generative models, and the results are shown in Table 5. From the results,
we can get several observations:

(1) The performance of our models surpasses most of the baseline methods on different evalua-
tion metrics. This clearly proves the effectiveness of our DPG framework based on reinforce-
ment learning and message-passing neural networks.

(2) DPG performs better than GRU-F, which demonstrates the effectiveness of our method to
capture the effect of the drug interaction and the influence of the patient condition explicitly.

(3) Generative models trained by maximum likelihood estimation or reinforcement learning
with F1 score outperform all the discriminative models in most cases markedly. This verifies
the superiority of utilizing generative models for the drug package recommendation task.

5https://pytorch.org/.
6https://github.com/rusty1s/pytorch_geometric.
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Table 5. The Performance of Each Model on Recommending the Best Package

APH MIMIC-III

model Precision Recall F1-value Precision Recall F1-value

NCF 0.4449 0.4044 0.4066 0.3997 0.3513 0.3634
NN 0.4658 0.4561 0.4439 0.3425 0.3264 0.3231

Package2vec 0.4730 0.4728 0.4550 0.3506 0.3319 0.3286
LDA 0.4745 0.4770 0.4591 0.3524 0.3319 0.3293
BR 0.4765 0.4760 0.4596 0.3583 0.3313 0.3313

DAM 0.4833 0.4874 0.4691 0.3565 0.3388 0.3350
DPR-WG 0.5146 0.4818 0.4797 0.3744 0.3295 0.3406
DPR-AG 0.5122 0.4880 0.4821 0.3756 0.3309 0.3420

CGAN 0.3914 0.3055 0.3251 0.2087 0.3172 0.2454
GRU-MLE 0.5633 0.5610 0.5462 0.4141 0.4651 0.4258
GRU-F 0.5961 0.5628 0.5639 0.4564 0.4394 0.4363

GRU-DPR 0.3124 0.2397 0.2510 0.1183 0.1772 0.1384
KG-MIML-Net 0.5590 0.5468 0.5369 0.3808 0.4497 0.4002
GAMENet 0.5700 0.5632 0.5508 0.4213 0.4601 0.4282
CompNet 0.5879 0.5798 0.5687 0.4571 0.4625 0.4488

DPG 0.6060 0.5738 0.5740 0.4662 0.4698 0.4560

We selected greedy search as the generation method for RNN-based generative models. Bold face

indicates the best result in terms of the corresponding metric.

(4) Generative models trained by reinforcement learning with F1 score outperform all the other
models. This demonstrates that reinforcement learning with a suitable reward function can
effectively reduce the drug order’s dependence, leading the performance much better than
maximum likelihood estimation.

(5) The performance of GRU-DPR, which is trained by reinforcement learning with the reward
given by a discriminative model, is extremely poor. The rationale behind this is that the
discriminative model cannot be completely accurate, and this deviation will further make
the generator perform worse due to the error accumulation. Although the GAN framework
can alleviate this problem, the CGANmodel cannot achieve satisfactory results and stucks in
a bad local optimum. This indicates the effectiveness and accuracy of calculating the reward
based on the ground truth drug package.

Then, we evaluated the quality of both the candidate sets and the selected best drug packages
generated by different models. Note that only generative models can generate candidate sets, so we
selected GRU-MLE, GRU-F, and DPG for evaluation. For greedy search, the size of each candidate
set is 1. For beam search and neighbor search, we set the size of each candidate set as 6, while 50%
packages are from existing packages in neighbor search. The results are shown in Tables 6 and
7. Furthermore, we evaluated the performance of each model on recommending low-frequency
drugs based on the best packages selected by the models. We deleted the top 50% of all drugs that
appeared most frequently in both ground truth packages and the generated ones, and calculated
the Precision, Recall, and F1-value. The results are shown in Table 8. From the results, we can get
the following conclusions:

(1) The Precision, Recall, and F1-value of the candidate sets generated by beam search are better
than those generated by the neighbor search. Again, this demonstrates that generative mod-
els can generate more accurate drug packages than existing packages as shown in Table 5.

ACM Transactions on Information Systems, Vol. 41, No. 1, Article 3. Publication date: January 2023.



3:22 Z. Zheng et al.

Table 6. The Performance of Each Model on Generating Candidate Sets

model
generation
method

S-Precision S-Recall S-F1 Coverage Diversity

GRU-MLE
Greedy Search 0.5633 0.5610 0.5462 0.5610 0.0000
Beam Search 0.5547 0.5646 0.5437 0.6527 0.2290

Neighbor Search 0.5196 0.5283 0.5078 0.7644 0.5373

GRU-F
Greedy Search 0.5961 0.5628 0.5639 0.5628 0.0000
Beam Search 0.5902 0.5609 0.5601 0.6000 0.1260

Neighbor Search 0.5382 0.5244 0.5152 0.7477 0.5118

DPG
Greedy Search 0.6060 0.5738 0.5740 0.5738 0.0000
Beam Search 0.5979 0.5740 0.5704 0.6012 0.1011

Neighbor Search 0.5405 0.5296 0.5189 0.7480 0.5049

Different generation methods are utilized for the generation.

Table 7. The Performance of Each Model on Selecting Best Packages

Greedy Search Beam Search Neighbor Search

model Precision Recall F1-value Precision Recall F1-value Precision Recall F1-value

GRU-MLE 0.5633 0.5610 0.5462 0.5517 0.5841 0.5522 0.5265 0.5273 0.5108
GRU-F 0.5961 0.5628 0.5639 0.5933 0.5649 0.5641 0.5311 0.5220 0.5106
DPG 0.6060 0.5738 0.5740 0.6033 0.5764 0.5741 0.5310 0.5248 0.5120

Different generation methods are utilized for the generation.

Table 8. The Performance of Each Model on Recommending Low-frequency Drugs

Greedy Search Beam Search Neighbor Search

model Precision Recall F1-value Precision Recall F1-value Precision Recall F1-value

GRU-MLE 0.0467 0.0426 0.0433 0.0074 0.0403 0.0116 0.0784 0.0747 0.0739
GRU-F 0.0080 0.0076 0.0078 0.0023 0.0077 0.0035 0.0734 0.0695 0.0686
DPG 0.0095 0.0091 0.0092 0.0085 0.0082 0.0083 0.0730 0.0697 0.0686

Different generation methods are utilized for the generation.

However, the Coverage and Diversity of the candidate sets generated by neighbor search
are much better than beam search. This indicates that the drug packages generated by beam
search tend to be consistent.

(2) Utilizing beam search can improve the performance of GRU-MLE on selecting the best pack-
ages effectively. However, this method does not work for models trained by reinforcement
learning. The rationale behind this is that different from greedy search, beam search can
keep track of more than one state. Therefore, it can reduce the impact on the result caused
by the order of the drugs. However, reinforcement learning can solve this problem more
effectively, hence it is meaningless to utilize beam search on GRU-F and DPG. Again, this
demonstrates the effectiveness of reinforcement learning to reduce the dependence on the
drug order, as shown in the previous discussion.

(3) From Table 8, we can find that there exists a trade-off between the accuracy of high-
frequency and low-frequency drugs. Moreover, beam search will reduce the accuracy of
recommending low-frequency drugs, since the best packages are selected by the joint
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probability as shown in Equation (30), which discourages the model from selecting low-
frequency drugs. Furthermore, we can find that the utilization of neighbor search can effec-
tively improve the accuracy of recommending low-frequency drugs.

Based on the above discussion, we can finally propose the best strategy in practice to generate
the candidate drug package set and the most suitable drug package for a new patient. For the
candidate drug package set, we utilize DPG and neighbor search to generate several packages that
contain both existing drug packages and packages generated by beam search at the same time. For
the most suitable drug package, we select the best package generated by beam search. In this way,
the model can generate a candidate set with high coverage and diversity as well as select packages
with high precision and recall.

5.3.2 Ablation Study. To further validate the effectiveness of each component of our models,
we also designed some simplified variants of our models as follows:

• DPG-MLE: This method is a simplified variant of DPG that only utilizes maximum likeli-
hood estimation to train the model.
• DPG-MLE w/o Mask: This method is a simplified variant of DPG-MLE that deletes the
mask layer in the calculation process.
• DPG-MLE w/o Graph: This method is a simplified variant of DPG-MLE that deletes the
loss function for the MPNN on the drug interaction graph, i.e., α = 0. In this way, the edge
attributes do not contain the information of drug interaction type.
• DPG-MLE-Raw: This method is a simplified variant of DPG-MLE that deletes the drug
interaction vector i in the calculation process. In this way, the model cannot capture the
drug interaction explicitly.
• DPG w/o Mask: This method is a simplified variant of DPG that deletes the mask layer in
the calculation process.
• DPG w/o Graph: This method is a simplified variant of DPG that deletes the loss function
for the MPNN on the drug interaction graph, i.e., α = 0 and β = 0.
• DPG-Raw: This method is a simplified variant of DPG that deletes the drug interaction
vector i in the calculation process.
• DPG w/o SCST: This method is a simplified variant of DPG that deletes the self-critical
baseline b in reinforcement learning.

The results of the ablation study are shown in Figure 5 from which we can draw the following
conclusions:

(1) DPG-MLE performs better than DPG-MLE w/o Mask, and DPG performs better than DPG
w/o Mask. This verifies that patient condition will influence the interaction effect between
drugs.

(2) DPG-MLE performs better than DPG-MLE w/o Graph and DPG performs better than DPR
w/o Graph. This demonstrates that the utilization of the drug interaction graph is signifi-
cant and the message-passing neural network can capture the interaction between drugs
effectively.

(3) Both DPG-MLE-Raw and DPG-Raw perform worst among the corresponding variants,
which verifies our assumption that it is necessary to capture the effect of the drug inter-
action and the influence of the patient condition explicitly during the generation process.

(4) DPG outperforms DPG w/o SCST by a large margin. Furthermore, we find that the training
process of DPG w/o SCST is very unstable. This demonstrates the effectiveness of the self-
critical sequence training method on improving performance and reducing the variance.
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Fig. 5. The results of ablation study.

5.4 Parameter Sensitivity

We evaluated how hyper-parameter hyper-parameters α , β , λ1, and λ2 affected the performance
in this section, and the results are shown in Figure 6. First, we separately evaluated the effect of α
and λ1 on the pretraining process of DPG, i.e., the performance of DPG-MLE. We fixed λ1 = 10−4

during the evaluation process for α and α = 7 during the evaluation process for λ1. The results are
shown in Figures 6(a) and 6(b). We can find that DPG-MLE performs best when we set α = 7 and
λ1 = 10−4. Furthermore, we can observe that the performance of DPG-MLE is good enough when
α ranges from 1 to 9 and λ1 ranges from 10−4 to 10−6, which proves the robustness of DPG-MLE.

Next, we trained the DPG model based on the best DPG-MLE model. Similarly, we separately
evaluated the effect of β and λ2 on the training process of DPG. We fixed λ2 = 10−5 during the
evaluation process for β and β = 0.5 during the evaluation process for λ2. The results are shown in
Figures 6(c) and 6(d). We can find that DPG-MLE performs best when we set β = 0.5 and λ1 = 10−5.
We can observe that the performance of DPG is good enough when β ranges from 0.5 to 3 and λ2
ranges from 10−5 to 10−8. However, we can also find that DPG cannot perform well when λ2 is too
large. All the above experiments have proved that the models proposed in this article are robust
enough, and the parameters are set in a reasonable range.

5.5 Case Study

In this part, we present some cases to illustrate the effectiveness of our model and reveal some
interesting medical rules based on the derived insights on patient conditions and drug interaction.

5.5.1 Mask Vector Analysis. As mentioned before, we extracted the mask vector σ (MLP (u)) of
patient u to describe the impact of the patient condition. To analyze the effect of the mask vectors,
we randomly selected 2,000 patients and their correspondingmask vectors, and projected them into
two-dimensional space with t-SNE, which is proposed in Reference [39]. We further selected two
representative patient groups with special needs for drugs based on common sense, respectively,
pregnant women and infants (or young children), as well as two representative patient groups
suffering from common diseases, respectively, patients with heart and stomach diseases.
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Fig. 6. The performance of DPG-MLE and DPG with different hyper-parameters.

Figure 7 shows the visualization result. From Figure 7(a), we can find that the mask vectors of
infants and pregnant women deviate the most from the vectors of other patients, which indicates
that these two groups have special requirements for drug selection, and this is consistent with our
common sense. Moreover, from Figure 7(b), we can find that due to the complexity and diversity
of heart and stomach diseases, the mask vectors of patients with these two diseases are not visibly
clustered together, and their special needs for medicines are personalized. We can further study
the impact of patient conditions on drug selection by statistical methods such as clustering, which
shows a great possibility of our method to help medical researchers.

5.5.2 Interaction Vector Analysis. We propose to calculate the drug interaction vectors to cap-
ture the drug interaction effect during the generation process in Section 4.3. To analyze the effect of
the interaction vectors, we randomly selected 600 drug pairs, which contain 300 synergetic drug
pairs and 300 antagonistic drug pairs, and calculated their corresponding drug interaction vec-
tors. We further projected them into two-dimensional space with t-SNE and Figure 8 shows the
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Fig. 7. Visualization of mask vectors. Different colored dots represent different types of patients.

Fig. 8. Visualization of interaction vectors. Different colored dots represent different types of drug

interaction.

visualization result. We can find that the interaction vectors corresponding to different interaction
types form different clusters, which indicates that different interaction types have different influ-
ences on patients. This demonstrates that our model can capture the effect of drug interactions
accurately.

5.5.3 Edge Attribute Analysis. In Section 4.1.2, edge attribute vectors are calculated to describe
the interaction between two drugs. The attribute vectors are forced to contain drug interaction
category information, and mask vectors are utilized to bring the impact of patient condition in
Section 4.3. We propose that the mask vector plays a role by feature selection. If we multiply a
contextual edge attribute vector ẽvu = m � êvu with the classification transfer matrix Q, then we
can get a personalized drug interaction classification result, and we will illustrate this in this case
study.
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Table 9. Edge Attribute Analysis for Patient #28266

Drug 1 Drug 2 Type so f tmax
(
ê�vuQ

)
so f tmax

(
ẽ�vuQ

)
Promethazine Cyclophosphamide Synergism [0.050, 0.950, 0.000] [0.041, 0.959, 0.000]
Dexamethasone Vindesine Antagonism [0.003, 0.007, 0.990] [0.676, 0.042, 0.282]

sof tmax
(
ê�vuQ

)
indicates the raw classification result while sof tmax

(
ẽ�vuQ

)
indicates the personalized

classification result.

Table 10. Drug Package Generation Result for Patient #24595

Model Result Synergistic Drug Pairs Antagonistic Drug Pairs

Ground Truth
Hexadecadrol, Tropisetron,
Thalidomide, Pantoprazole,

Rabeprazole

Thalidomide-Rabeprazole,
Tropisetron-Rabeprazole

None

GRU
Zoledronate, Hexadecadrol,
Omeprazole, Torasemide,
Tropisetron, Endoxan

None
Hexadecadrol-Torasemide,

Endoxan-Torasemide
Tropisetron-Torasemide

DPG-MLE
Hexadecadrol, Tropisetron,
Zoledronate, Pantoprazole

None None

DPG
Hexadecadrol, Tropisetron,
Zoledronate, Pantoprazole,

Rabeprazole
Tropisetron-Rabeprazole None

The generated results shown here are unordered. Bold face indicates drugs appeared in ground truth package.

We picked patient #28266 for detailed analysis. This patient was a 47-year-old man with lym-
phoma and had surgery in the hospital. We got the corresponding patient mask vector and drug
interaction vectors by DPG. We also got the non-personalized and personalized drug interaction
classification results for the drug interaction vectors. Table 9 shows two examples for this. We
can find that Promethazine and Cyclophosphamide have a synergistic effect, and the initial drug
interaction vector reflects this point. Furthermore, the mask vector keeps this feature, since these
two drugs can enhance the sedation effect and treat cancer. In addition, Dexamethasone and Vin-
desine are marked as antagonistic, and this is reflected in the drug interaction vector. However,
the mask vector weakened the antagonistic effect between these two drugs, since both the anti-
inflammatory effect of dexamethasone and the anti-cancer effect of vindesine is very important
for the patient. The above examples strongly confirm the effectiveness and interpretability of DPG
from different perspectives.

5.5.4 Generation Result Analysis. First, we compared the drug packages generated by different
models, respectively, GRU, DPG-MLE, and DPG, for the same patient to demonstrate the effective-
ness of our model to select suitable drugs. We picked patient #24595 for detailed analysis. This
patient was a 60-year-old woman with stomach and lung diseases, and the results are shown in
Table 10. We can find that the drug package generated by GRU contains only two correct drugs.
Furthermore, due to the insufficient ability to capture the effect of drug interaction, the model gen-
erated Torasemide, which is incorrect and has an antagonistic effect with several other drugs. Our
DPGmodel, which utilizes interaction feature extractor andmask layer to capture drug interaction
explicitly, solved this problem effectively and generated more correct drugs. Moreover, thanks to
the intense power of reinforcement learning, we can find that the package generated by DPG is
better than DPG-MLE.
Second, we compared the order of the sequences generated by DPG and DPG-MLE to show the

influence of reinforcement learning on the generation order. We picked patient #135 for detailed
analysis. This patient has myocardial infarction, and the results are shown in Table 11. We can
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Table 11. Drug Package Generation Result for Patient #135

Model Result in order

DPG-MLE
1/2 NS, Acetaminophen, Aspirin EC, NS, Atorvastatin, Atropine Sulfate, Captopril,

Clopidogrel Bisulfate, Docusate Sodium, Eptifibatide, Furosemide, Heparin,
Heparin Sodium, Lisinopril, Magnesium Sulfate, Metoprolol, Pantoprazole, Potassium Chloride, Senna

DPG
1/2 NS, Captopril, Aspirin EC, Atropine Sulfate, Atorvastatin, Senna, Acetaminophen,

Clopidogrel Bisulfate, Eptifibatide, Docusate Sodium, Heparin Sodium,
Furosemide, Pantoprazole, Lisinopril, Potassium Chloride, Metoprolol, Heparin, Magnesium Sulfate, NS

The generated results shown here are ordered. Bold face indicates drugs appeared in ground truth package.

find that although the drugs in the two drug packages are the same, the order of drugs generated
by the two models is different. Furthermore, DPG tends to generate some important drugs, like
Captopril, Aspirin EC, Atropine Sulfate, which can act directly on the heart to save the patient’s
life in the first few time steps, while the auxiliary drugs like Heparin in the last few time steps.
This demonstrates that reinforcement learning can change the generation order of the samemodel,
which further leads to better results.

6 CONCLUSION

In this article, we proposed a novel generative model named DPG to solve the problem of drug
package recommendation. Specifically, we first proposed to construct a drug interaction graph
based on the drug interaction data we collected from two large online pharmaceutical knowledge
bases. Then, we utilized a message-passing neural network to learn drug embeddings that contain
the interaction information between drugs. After that, we proposed a novel generative drug pack-
age recommendation framework named DPG, in which the drug interaction and the influence of
the patient condition are captured explicitly by a mask layer. Furthermore, we proposed a train-
ing method based on both maximum likelihood estimation and reinforcement learning to reduce
the dependence on the drug order. Finally, extensive experiments on a real-world data set from a
first-rate hospital demonstrated the effectiveness of our DPG framework compared with several
competitive baseline methods.
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