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Abstract—Cognitive diagnosis has been widely recognized as a
crucial task in the field of computational education, which is capa-
ble of learning the knowledge profiles of students and predicting
their future exercise performance. Indeed, considerable research
efforts have been made in this direction over the past decades.
However, most of the existing studies only focus on individual-level
diagnostic modeling, while the group-level cognitive diagnosis still
lacks an in-depth exploration, which is more compatible with
realistic collaborative learning environments. To this end, in this
paper, we propose a Relation-guided Dual-side Graph Transformer
(RDGT) model for achieving effective group-level cognitive diagno-
sis. Specifically, we first construct the dual-side relation graphs (i.e.,
student-side and exercise-side) from the group-student-exercise
heterogeneous interaction data for explicitly modeling associations
between students and exercises, respectively. In particular, the edge
weight between two nodes is defined based on the similarity of
corresponding student-exercise interactions. Then, we introduce
two relation-guided graph transformers to learn the representa-
tions of students and exercises by integrating the whole graph
information, including both nodes and edge weights. Meanwhile,
the inter-group information has been incorporated into the student-
side relation graph to further enhance the representations of stu-
dents. Along this line, we design a cognitive diagnosis module for
learning the groups’ proficiency in specific knowledge concepts,
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which includes an attention-based aggregation strategy to obtain
the final group representation and a hybrid loss for optimizing
the performance prediction of both group and student. Finally,
extensive experiments on 5 real-world datasets clearly demonstrate
the effectiveness of our model as well as some interesting findings
(e.g., the representative groups and potential collaborations among
students).

Index Terms—Computational education, education data mining,
cognitive diagnostic models, group-level cognitive diagnosis.

I. INTRODUCTION

COGNITIVE diagnosis has been recognized as a pivotal
task in intelligent education, aimed at determining stu-

dents’ mastery of the corresponding knowledge concepts by
exploring their exercise records. It has been applied in various
educational scenarios, such as online exercise design [1], [2],
computerized adaptive testing [3], and course recommenda-
tion [4], [5], leading to more efficient and effective student
learning. In past decades, various cognitive diagnostic models
(CDMs) have been developed, which can generally be grouped
into two categories: psychometric theory-based CDMs [6], [7],
[8] and neural network-based CDMs [9], [10], [11]. For in-
stance, item response theory (IRT) [6], multidimensional IRT
(MIRT) [7] and deterministic inputs, noisy “and” gate model
(DINA) [8] manually design simple student-exercise interac-
tion functions based on psychometric theory to mine ability
factors associated with students, while neural cognitive diag-
nosis (NCD) [9] and relation map driven cognitive diagnosis
(RCD) [10] model higher-order student-exercise interactions by
incorporating neural networks.

Most of the existing CDMs mainly focus on individual as-
sessments, however, they are not applicable to another classical
educational scenario, i.e., collaborative learning, where learn-
ers study in groups and influence each other [12]. Similar to
individual cognitive diagnosis, group-level cognitive diagnosis
(GCD) refers to the assessment of the group’s cognitive abilities
utilizing the interactive responses of a group of students on
given exercises [13]. As illustrated in Fig. 1(a), unlike individual
diagnosis, the input of GCD is a group of students and the
exercising records of the group where the response results are
correct rate and the output is the group’s mastery level in specific
knowledge concepts.

A major challenge in realizing efficient GCD lies in exploring
group representation utilizing sparse group-exercise interaction
data. Intuitively, we can incorporate student interaction behavior
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Fig. 1. Illustrative examples of (a) the comparison of group-level cognitive
diagnosis and individual cognitive diagnosis; (b) the group-student-exercise
heterogeneous construction process. The Q-matrix is the correlation matrix
between exercises and knowledge concepts, e.g., exercise e1 contains knowledge
concepts c1 and c3. The check mark and cross mark indicate that students have
answered exercises correctly and incorrectly, respectively. In the interaction
graph, solid lines between nodes represent established connections, while dashed
lines signify potential relations.

into the group-exercise interaction data, and then aggregate it to
form group representations by modeling student representations.
As shown in Fig. 1(b), the group interaction (oi, ek, r) can be
extended into a set of quadruple (oi, sj , ek, rjk), where student
sj belong to group oi, r and rjk represent the correct rate
and score of oi and sj on the exercise ek, respectively. Along
this line, one recent approach, named MGCD [13], models
student-exercise (oi, sj , ek, rjk) and group-exercise (oi, ek, r)
interactions in a multi-task manner to jointly learn individual and
group representations. Despite the impressive effect it achieves,
we argue that the intrinsic information between groups, students,
and exercises remains unexplored. In this paper, we attempt to
comprehensively model the group-student-exercise interaction
data, while introducing graph structure to promote information
passing between groups and exercises to ameliorate the sparse
interaction between them. Moreover, there exists the potential
influence among students in a group under the collaborative
learning scenario. As shown in Fig. 1(b), students s1 and s2
exhibit similar response behaviors, which may be attributed to
their potential collaborative learning behavior. Along this line,
we propose a novel relation graph structure to explicitly model
such intrinsic associations, which improves both individual and
group representation and helps teachers identify the potential
collaborations among students in a group.

To be specific, we propose a Relation-guided Dual-side Graph
Transformer (RDGT) model for delivering a more productive
group-level cognitive diagnosis. First, we construct dual-side
relation graphs, i.e., student-side and exercise-side, from the
group-student-exercise heterogeneous interaction data for ex-
plicitly modeling associations between students and exercises,
respectively. Moreover, we implement two improved graph
transformers to learn the student representations within the
group as well as the exercise representations, by introducing
relation encoding to better capture the holistic information about
the dual-side graphs including node and edge features. Then, a
cognitive diagnosis module is designed for learning the groups’
mastery on specific knowledge concepts, which includes an
attention-based aggregation strategy to obtain the final group
representation and a hybrid loss on group and student perfor-
mance prediction to learn model parameters. Finally, we conduct

extensive experiments on real-world datasets that clearly demon-
strate the effectiveness of our model and two case studies reveal
that our model can be utilized to identify representative groups
and potential collaborations among students. In summary, our
key contributions are listed as follows:
� We propose a novel group-level cognitive diagnosis model,

namely RDGT, which innovatively introduces a dual-side
graph structure to explicitly mine potential associations
between students within groups, as well as feature corre-
lations between exercises.

� We implement two novel graph transformers by designing
the relation-guided encoding, which utilizes the respective
edge attributes on the same interaction path between both
student and exercise nodes to calculate the association
distance, tailored for mining relationships in educational
scenarios.

� We design an inter-group information enhancement mod-
ule to facilitate prospective inter-group information mining
by associating top-k most similar out-group students for
each student.

� We conduct extensive experiments on five real-world ed-
ucational datasets, and the results show the effectiveness
of the proposed RDGT model. Furthermore, we perform
two meaningful case studies, which demonstrate that the
representations learned by RDGT can help us understand
representative individuals in the group, and observing the
learned correlation matrix of students within the group
could assist us in identifying inter-student effects.

II. RELATED WORK

A. Cognitive Diagnosis

Cognitive diagnosis (CD) is a type of assessment method
for characterizing students’ proficiency profile based on their
interactive behaviors [14], which is originated from educational
psychology and subject to the pedagogical assumption that the
cognitive state of each student is stable for a short period of
time [15]. Existing research has developed numerous effec-
tive cognitive diagnostic models which are mainly classified
into two categories, i.e., psychometric theory-based and neural
network-based, respectively. The first category of models is
designed based on psychological theories for portraying student
proficiency state by latent factors (e.g., Item Response Theory
(IRT) [6], Multidimensional IRT (MIRT) [7], and Deterministic
Inputs, Noisy And gate model (DINA) [8]). For example, in
DINA, each student is characterized as a binary vector denoting
whether the student has mastered the knowledge concepts cor-
responding to the exercises, and all relevant skills are needed to
have the highest positive response probability.

Another category of models focuses on modeling the com-
plex relationship between students, exercises, and knowledge
concepts by incorporating neural networks to accurately profile
students’ mastery attributes (e.g., NeuralCD [9], RCD [10]
and HierCDF [16]). Specifically, NeuralCD, as a representative
neural CDM, utilizes multidimensional parameters to depict
the cognitive states of students and the attributes of exercises
at a fine-grained level, and neural networks are introduced
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to capture complex interactions from heterogeneous data. In
addition, RCD mainly learns more effective representations
by modeling the interactive and structural relations with the
student-question-concept relation map. HierCDF [16] primarily
exploits the dependencies of knowledge concepts to assist in
modeling the interaction between students and exercises which
proves that the introduction of attribute hierarchy can effectively
improve the performance of diagnosis.

Existing research on CD mainly focuses on the assessment of
individuals, however, they are not applicable to another clas-
sical educational scenario, i.e., collaborative learning, where
learners study in groups and influence each other [12]. Re-
cently, MGCD [13] has been proposed to conduct a group-level
assessment from a multi-task perspective by jointly training
student response records and group interaction data. Although
the method performs effectively and achieves attractive results
for the GCD task, it has yet to deeply explore the underlying
relationship between the group-student-exercise. Specifically,
MGCD simply considers student-exercise interactions as ad-
ditional data for assisting in training the main task of group
performance prediction, and it ignores the information cou-
pling between group-exercise instances and student-exercise
instances. Besides, students’ learning behaviors under the group
dimension always influence each other, and the mining of this
relationship has yet to be reflected in MGCD.

B. Graph Representation Learning

Research on graph representation learning [17], [18] has re-
ceived increasing attention in recent years due to the universality
of graphs in the real world, e.g., social networks [19], knowledge
graph [20], [21], biological networks [22], recommendation
systems [23], etc. The goal of graph representation learning is
learning the features of nodes or edges and capturing structural
information to generate graph representation vectors (aka, the
embedding vector) for further support of various graph mining
tasks, such as node classification, community detection and link
prediction [24], [25], [26], [27], [28], [29]. This is especially
important because the quality of the graph representation vectors
will directly affect the performance of the downstream tasks.
Extensive approaches have been proposed for learning effective
graph representations, which are generally categorized into two
genres. The one is traditional graph embedding methods, which
employ different techniques to capture the information in the
graph, including random walks [30], factorization methods [31]
and non-GNN based deep learning [32]. Graph neural net-
works [33], [34], [35] are another category of graph embedding
methods that have been proposed recently, where node repre-
sentations can be effectively explored from rich neighborhood
information. For instance, graph convolutional networks (GCN)
leverage efficient symmetric-normalized aggregation to approx-
imate the first-order spectral convolutions on graphs [34]. Graph
attention networks (GAT) employ a self-attention mechanism
to dynamically aggregate node neighbors’ information [36].
Furthermore, heterogeneous graph neural networks are studied
to address the graph heterogeneity problem in many real-world
situations. For example, HAN [37] and HetG [38] consider the
multi-level information and the attention mechanism to improve

heterogeneous graph learning. HGSL [39] proposes to jointly
perform heterogeneous graph structure learning and GNN pa-
rameter learning by generating feature relation subgraphs, thus
alleviating the noise and incomplete problem.

In addition to the above approaches, Transformers have been
introduced in recent years for powerful modeling graphs ben-
efiting from its capability of capturing long-range and global
features on the graph [40], [41]. These models have achieved
competitive or even superior performance against GNNs in many
applications, such as molecule property prediction [41], catalysts
discovery [42] and recommendation systems [43]. For example,
Graphormer [41] is proposed as a novel graph transformer archi-
tecture, which is designed for better modeling graph-structured
data by introducing several simple yet effective structural en-
coding mechanisms. Min et al. proposed a novel Graph-Masked
Transformer (GMT) to effectively incorporates different kinds
of interactions among the local neighborhood nodes to produce
highly representative embeddings [43]. HTGT [44] proposes
a heterogeneous temporal graph transformer framework by in-
tegrating both spatial and temporal relations while preserving
the heterogeneity to learn node representations for malware
detection. HGT [45] designs node- and edge-type dependent
parameters to characterize the heterogeneous attention, empow-
ering the proposed heterogeneous graph transformer to maintain
dedicated representations for different types of nodes and edges.
Our RDGT designs effective relation encoding and introduces it
into the powerful dual-side graph transformers, tailored for min-
ing relationships among students and modeling the group-level
cognitive diagnosis.

III. PROBLEM STATEMENT

In this section, we introduce the GCD task and notations
used in this paper. Specifically, we use bold uppercase and
lowercase letters to represent matrices and vectors, respectively.
All import notations have been summarized in Table I. Let O =
{o1, o2, . . . , oL} be the set of L groups, S = {s1, s2, . . . , sN}
be the set of N students, E = {e1, e2, . . . , eM} be the set of M
exercises, and C = {c1, c2, . . . , cK} be the set of K knowledge
concepts. Each group consists of a certain number of students,
e.g., the ith group oi = {si,1, si,2, . . . , si,|oi|}, where si,∗ ∈ S
and |oi| denotes the size of group gi. We collect two kinds of
response data without intersection, which are student-exercise
interaction records U and group-exercise interaction records
F , respectively. U , which originates from the student’s daily
practice, is denoted as a set of triple (s, e, rse) where s ∈ S ,
e ∈ E and rse ∈ {0, 1} is the score that student s got on exercise
e. Meanwhile, F arises from the group assessment (i.e., all
students in the group completed the same batch of exercises),
and we denote it as a set of triple (o, e, yoe) where o ∈ O,
e ∈ E and yoe ∈ [0, 1] is the correct rate that group o got on
e. In addition, we define Q = {qij}M×K as the Q-matrix where
qij = 1 if exercise ei requires knowledge concept cj and 0
otherwise.

Problem Definition: Given the student-exercise response
records U , group-exercise response records F and the Q-matrix
Q, the goal of the group-level cognitive diagnosis task is to mine
groups’ proficiency level on specific knowledge concepts.
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TABLE I
SUMMARY OF THE PRIMARY NOTATIONS

IV. METHODOLOGY

In this section, we first give an overall overview of our
proposed model RDGT (short for Relation-Guided Dual-Side
Graph Transformer). Afterward, we delve into each part of the
model with a comprehensive explanation.

Overview. Our RDGT model employs a novel relation-guided
graph transformer to explore the internal associations of student-
side and exercise-side respectively from the heterogeneous inter-
action graphs of group-student-exercise. It effectively improves
representations by adaptively learning coupling information
from the dual-side graphs, allowing for accurate diagnosis of
groups’ proficiency levels on knowledge concepts. As illustrated
in Fig. 2, the architecture of RDGT comprises three compo-
nents, including the dual-side graph construction, the relation
encoding-based graph transformer, and the cognitive modeling
module. Specifically, we first utilize the group-student-exercise
interaction data to build a global interaction heterogeneous graph
and exploit the structural information on the global graph to

construct student-side and exercise-side relation sub-graphs,
respectively. In the relation encoding-based graph transformer,
we encode the structural feature on dual-side relation graphs into
relation encoding as a guided inductive bias and introduce it into
the self-attention layer to capture intrinsic associations in the
graph adaptively for more effective learning of representations.
Particularly, an attention-based aggregation strategy is applied to
combine the learned student representations and the initial group
representation to obtain the final group representation. Finally,
we construct a cognitive modeling module, which consists of a
neural interaction function and multiple neural network layers,
to model the complicated interaction between the group and the
exercise for accurately predicting the group’s performance on a
given exercise.

A. Relation-Guided Dual-Side Graph Construction

In contrast to traditional CD which primarily relies on in-
dividual response data to diagnose students, GCD involves a
notably distinct context where students practice exercises and
are assessed in a group setting. In this context, interaction data
including responses from both the same student and different
students are no longer isolated, rather there are highly intrinsic
correlations that should not be ignored during the exploration
of student interaction behavior. Given the advantage of graph
data structures in effectively modeling complex connections and
intrinsic relationships between entities, we build a heteroge-
neous graph to integrally model the connections between groups,
students, and exercises.

The global group-student-exercise heterogeneous graph
H(O ∪ S ∪ E ,Ros ∪Rse) is an undirected graph as shown in
the left part of Fig. 2(a), which consists of three categories of
nodes and two kinds of relation types, where O, S and E are the
sets of groups, students, and exercises, respectively, Ros refers
the set of group-student affiliations, and Rse denotes the set of
student-exercise interactions from training data including both
student-based interactions from F and group-based interaction
from U . If the group-student relation linkoi↔sj = 1, student
sj belongs to group oi. In addition, the relation linksi↔ej = 1
indicates that student si has performed a response on exercise ej .
It is important to note that the connections between students and
exercises are undirected (i.e., both receive information about
each other’s responses) and that we utilize the results of the
interactive responses as the corresponding edge characteris-
tics. The heterogeneous graph structure allows for the efficient
end-to-end learning of node representations in graph neural
networks and its effectiveness is verified in the experiment
section (details in Section V-B). Nevertheless, it neglects the
connections of the same type of nodes within the group (e.g.,
student-student and exercise-exercise), making it crucial to ac-
tively mine such potential correlations for group-level dimension
diagnosis. Therefore, in this paper, we propose a dual-side graph
construction strategy to model the internal associations of stu-
dents and exercises from both sides, respectively, for explicitly
mining the intrinsic information on the group dimension. In what
follows, we elaborate on the graph construction of each side,
respectively.
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Fig. 2. Overview architecture of RDGT: (a) the construction of relation-guided dual-side graph; (b) the relation-guided graph transformers; and (c) The cognitive
diagnosis module.

1) Student-Side Relation Graph Construction: In the real
world, students in a physically meaningful group (e.g., a class)
always have mutual influences on each other during learning
activities, for example, students who are deskmates may have
very similar study behavior or students with good relationships
in the class may enjoy comparable learning abilities. Obviously,
it is essential to explore the relationship between individuals
within the group during the diagnosis process. Therefore, we
propose first to extract the student-exercise interaction graph
Hs↔e from the initial heterogeneous graph H. Then, we utilize
the interaction features between students and exercises on this
graph to mine collaborative information. For any student u
and student v, we define the association distance duv as the
collaborative similarity between them, as below

du,v = sim (mu,mv) ,

mu =
[
mu,t1 ,mu,t2 , . . . ,mu,t|Nu,v |

]
,

mv =
[
mv,t1 ,mv,t2 , . . . ,mv,t|Nu,v |

]
, (1)

where Nu,v denotes the common heterogeneous neighbors of
node u and node v, which should be a set of |Nu,v| exercise
nodes, mu,t denotes the feature of the edge (u, t) set as the
score that the studentsu get on the exercise t, i.e., rut, and sim(·)
denotes the similarity function, such as Cosine similarity, on two
vectors mu,mv ∈ R|Nv,u|. The proposed method of calculating
the association distance is essentially a deep excavation of the
similarity in behavioral performance between student pairs.
Based on the calculated distance information, we construct the
student-side relationship as a complete graph with nodes S and
edges R: GS = (XS ,ZS), where XS ∈ R|S|×ds is student node
features and ZS ∈ R|S|×|S| denotes edge weights obtained from
the association distance. As shown in the blue part of Fig. 2(a),
the student relationship graph of each group is a subgraph of

GS , which consists of all student nodes in the group, as well as
the edges between each node pair has a weight characterizing
the initial proximity.

2) Exercise-Side Relation Graph Construction: Indeed, the
correlation among exercises is also necessary for the learning of
their characteristics. However, this relationship cannot be ade-
quately understood solely through the attributes of knowledge
concept [10], e.g., two exercises that involve similar knowledge
concepts but have completely different difficulty properties.
Here, we propose to explore the underlying impact between
exercises based on their interaction with students. Similar to the
student-side graph, we define the association distance between
exercise node i and j as

di,j = sim (ni,nj) ,

ni =
[
ni,t1 , ni,t2 , . . . , ni,t|Ni,j |

]
,

nj =
[
nj,t1 , nj,t2 , . . . , nj,t|Ni,j |

]
, (2)

where Ni,j denotes the common heterogeneous neighbors of
nodes i and j, which should be a set of |Ni,j | student nodes, ni,t

is the feature of student-exercise edge (t, i) set as the score that
the student t get on the exercise i, i.e., rti. Afterwards, as shown
in the green part of Fig. 2(a), we construct the exercise-side
relationship graph GE = (XE ,ZE), where XE ∈ R|E|×de is
exercise node features, and ZE ∈ R|E|×|E| denotes edge weights
represented by the association distance.

B. Relation-Guided Graph Transformer

In this part, we propose a novel graph transformer based on
relation encoding for effective representation learning, which is
described below in terms of both student and exercise, respec-
tively.
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1) Student-Side Graph Transformer: Mining the fine-
grained structure information from the constructed student-side
relation graph is crucial for learning student representations, as
each node within a group is influenced by others to varying
degrees. Encoding graphs with the transformer to uncover deep
correlations between nodes is regarded as remarkably power-
ful due to its ability to capture holistic information from the
global receptive field [41]. The iconic transformer architec-
ture [46] comprises multiple transformer layers, each of which
is composed of a multi-head self-attention block followed by
a position-wise feed-forward network (FFN) layer that features
both residual connections and layer normalization operations.
Specifically, by sampling all student nodes in the group o ∈ O
and edge weights among them from GS , we obtain the student-
side subgraph GS with corresponding node feature matrix
XS ∈ RNs×ds and edge weight matrix ZS ∈ RNs×Ns , where
Ns denotes the number of nodes within the subgraph. Then, the
multi-head self-attention module at layer l can be defined as,

QS
l,k = XS

l−1W
Q
l,k, K

S
l,k = XS

l−1W
K
l,k, V

S
l,k = XS

l−1W
V
l,k

AS
l,k = softmax

(
QS

l,k(K
S
l,k)

T

√
dh

)
, XS

l,k = AS
l,kV

S
l,k,

XS
l = concat

(
XS

l,1,X
S
l,2, . . . ,X

S
l,H

)
, (3)

where XS
l−1 is the node feature matrix at (l − 1)th layer,

QS
l,k,K

S
l,k,V

S
l,k ∈ RNs×dh are the query matrix, the key ma-

trix, and the value matrix of the kth head at the self-attention
layer l, respectively, WQ

l,k,W
K
l,k,W

V
l,k ∈ Rds×dh are the cor-

responding trainable parameter matrices, dh = ds

H denotes the
dimension of each self-attention head, H stands for the number
of self-attention heads, and softmax(·) and concat(·) denotes
the row-wise softmax function and concatenation operation,
respectively. Specifically, the multi-head mechanism enables the
model to implicitly learn representation from different aspects.
The outputXS

l is then passed into a FNN layer, as defined below

X̃S
l = LayerNorm

(
XS

l−1 +XS
l

)
,

XS
l =LayerNorm

(
σ
(
X̃S

l Wl,1+bl,1

)
Wl,2+bl,2

)
, (4)

where Wl,1 ∈ Rds×d, bl,1 ∈ Rd, Wl,2 ∈ Rd×ds , and bl,2 ∈
Rds are trainable parameters, d is the hidden dimension,
LayerNorm(·) denotes the LayerNorm operation [47], and
σ(·) denotes the activation function (e.g., GELU [48]).

Unlike NLP tasks [46], [49], which preserve the structural
information of chain-structured language by inputting position
encoding in the transformer, graph-structured data is difficult
to generalize such operations. Therefore, we devise relation
encoding that relates to the associative distance information
between students (i.e., the edge feature matrix ZS in GS) to
inject the inductive bias in the self-attention module for learning
student representations.

Relation Encoding: For each pair of student nodes su and sv
in the student-side relation sub-graph GS , we first obtain the
edge feature zSu,v between them, which is calculated from the
association distance, and then encode it as an attention scalar

bSu,v in a relation attention matrix BS = {bSu,v}u,v ∈ RNs×Ns

as below

bSu,v = sigmoid
(
zSu,vh

S
1 + bS

1

)T
hS
2 + bS2 , (5)

where zSu,v is the edge feature value between node su and
sv , hS

1 ,b
S
1 ,h

S
2 ∈ Rd and bS2 ∈ R are the trainable projection

parameters, and sigmoid(·) denotes the sigmoid activation
function. We then introduce structural information by adding
the encoded relation attention matrix to the attention score
component of the self-attention module, which is formulated
as follows:

AS
l,k = softmax

(
QS

l,k(K
S
l,k)

T

√
dh

+BS

)
. (6)

Different from the previous structural encoding strategies that
encode path features between node pairs in graph transformer
architectures [40], [41], [50], our proposed method utilizes the
respective edge attributes on the same interaction path between
student nodes to calculate the association distance, tailored for
relationship mining among students (especially within groups)
in educational scenarios. Essentially, the introduction of BS

into a single transformer layer actually involves serving relation
encoding as guiding information, enabling each student node
within a group to adaptively attend to other nodes and thus more
effectively aggregate intra-group influences for learning student
representations. In addition to intra-group effects, we consider
that the association of students between groups is beneficial
for students’ perceptions of ability, e.g., two students who are
friends although not in the same group usually have similar
study habits. Thus, we further propose inter-group information
enhancement to promote the learning of student representations.

Inter-Group Information Enhancement: For any student node
su ∈ GS , we calculate its behavioral similarity du,v′ to other
out-group nodes s′v ∈ ĜS using the association distance in (1),
where ĜS = GS \GS denotes the sub-graph of the student-side
relation graph GS excluding GS . We then obtain the similarity
set of between node su and all nodes outside the group, i.e.,
{du,v′ }v′∈ĜS . As shown in Fig. 2(b), we select top-k nodes from

ĜS with the highest behavioral similarity to su to construct its
first-order neighbors. Simultaneously, we add an abstract node in
GS for signifying the group and connecting it to all student nodes
in the group. With this strategy, the representations of student
nodes receive not only local influence from the intra-group but
also are enhanced by the global information of the inter-group.
Furthermore, the group node, as a high-level element, enables
the perception of a global perspective and the aggregation of
productive information to promote the improvement of students’
representations.

2) Exercise-Side Graph Transformer: Here, we leverage a
transformer to model the exercise-side relation graph by in-
troducing relation encoding that implies information about the
association of exercises. Similar to the student representation
learning, which is optimized at the group level, we implement
the exercise-side graph transformer by sampling the subgraph
GE from the whole exercise-side relation graph GE to learn the
exercise representations. For any two exercise nodes ei and ej
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in GE , we encode the association distance between them into
attention scalar bEi,j as the relation encoding

bEi,j = sigmoid
(
zEi,jh

E
1 + bE

1

)T
hE
2 + bE2 , (7)

where zEi,j is the edge feature value between node ei and ej ,
hE
1 ,b

E
1 ,h

E
2 ∈ Rd and bE2 ∈ R are the trainable parameters.

We then obtain the relation encoding matrix BE = {bEi,j}i,j ∈
RNe×Ne , and Ne denotes the number of exercise nodes within
the group. To incorporate it into the self-attention module,
we rewrite the attention score matrix AE

l,k ∈ RNe×Ne in the
transformer layer applied to learn exercise representations as
follows:

AE
l,k = softmax

⎛⎜⎝QE
l,k

(
KE

l,k

)T
√
dh

+BE

⎞⎟⎠ , (8)

whereQE
l,k ∈ RNe×dh andKE

l,k ∈ RNe×dh are the query matrix
and key matrix. Notably, the definition here is similar to (3).
The introduction of this guided information enables transformer
architecture to expediently aggregate enriched information from
the exercise-side relation graph and potentiate the learning of the
exercise representations.

C. Cognitive Diagnosis Module

The goal of the cognitive modeling module is to train the
RDGT jointly using group and student response records on the
exercises and model the group-dimensional cognitive interac-
tions by predicting the groups’ exercising performance.

1) Group Representation Aggregation: As shown in the
Fig. 2(c), for the group o ∈ O, we denote the student-side node
embedding matrix outputted by the proposed relation encoding-
based graph transformer as X̂ ∈ R(1+|o|)×ds , which includes
an abstract group node and |o| student nodes. Although the
virtual group node learns extensive information, the actual group
representation supposedly is formed by aggregating the features
of all students in the group. Therefore, referring to [13], [51],
we employ an attention mechanism to aggregate the represen-
tations of students in the group which reflects that each student
contributes differently to the group’s ability

xO
o =

∑
xS
j ∈X̂S

λjx
S
j , (9)

wherexS
j ∈ Rds is the jth node representation,xS

0 stands for the
learned representation of the virtual group node, and λj presents
the contribution weight of the jth node

λ̃j = ReLU
((

xS
j

)T
Wk + xS

0W
q
)
h,

λj =
exp

(
λ̃j

)∑
1≤j′≤|o| exp

(
λ̃j′
) . (10)

whereWk,Wq ∈ Rds×d are the key matrix and query matrix of
the attention layer, andh ∈ Rd is the weight vector for projecting
attention scores.

2) Interaction Layer: To model the complicated interactions
of group-exercise and student-exercise for more reliable cogni-
tive diagnosis, we adopt the widely utilized neural interaction
function [9] in our model. It can seamlessly integrate with
non-linear neural network layers, and its capability to model
high-dimensional interactive elements (e.g., group, student, and
exercise) enables the acquisition of extensive knowledge and
the presentation of interpretable information. In this work, the
interaction layer consists of the interaction function and the
diagnosis layer, defined as follows:{

r̂se = MLPS

(
TS
(
xS
s ,x

E
e

))
ŷoe = MLPO

(
TO
(
xO
o ,x

E
e

)) , (11)

where r̂se and ŷoe denote the predicted response results of
student s and group o on the exercise e, MLPS and MLPO

are two different MLP networks, and T∗ indicates the neural
interaction function [9]{TS (xS

s ,x
E
e

)
= Qe ◦

(
xS
s − hdiff

)
× hdisc

TO
(
xO
o ,x

E
e

)
= Qe ◦

(
xO
o − hdiff

)
× hdisc

, (12)

where the hdiff = xE
e [:−1] ∈ Rde−1 and hdisc = xE

e [−1] ∈ R
are two exercise factors representing difficulty and discrimi-
nation, which are split from the exercise representation xE

e , ◦
and × denote the element-wise product and the multiplication
operation, respectively, and Qe denotes the knowledge concept
attribute corresponding to e originates from the Q-matrix Q.

3) Loss Function: In the training phase, we jointly evaluate
the performance of the predicted student-exercise interaction
and group-exercise interaction. We believe that predicting the
students’ exercising performance with label information from
U is beneficial for the training of the group-level diagnosis task,
which makes the group and student information more coupled
and alleviates the interaction sparsity problem. Specifically, for
each student group o, we adopt the cross-entropy loss function
for students’ exercising performance prediction as follows:

Lstu
o = −

∑
(s,e,rse)∈Uo∪Fo

r̂se log rse + (1− r̂se) log(1− rse),

(13)
where Uo ⊂ U and Fo ⊂ F stand for the student’s interaction
records related to the group o. Then, we choose the mean square
error loss (MSE) function for predicting the groups’ correct rate
for a given exercise

Lgrp
o =

∑
(o,e,roe)∈Fo

(ŷoe − yoe)
2, (14)

Finally, we obtain the complete optimization objective func-
tion by summing the loss functions of the above two objectives
with weight coefficients to balance the scale

Lo =
1

|Fo|
Lgrp
o +

γ

|Uo ∪ Fo|
Lstu
o . (15)

where γ is the weight coefficient to control the influence of
auxiliary student-exercise interaction data.

In summary, in the modeling of group-exercise interactions,
we also utilize the interaction data between students and the
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TABLE II
THE STATISTICS OF ALL DATASETS

exercises within and outside the group for joint training. This co-
optimization strategy conforms better to the graph structure we
have constructed and enables deeper mining of group features.

V. EXPERIMENTS

In this section, we conduct extensive experiments on five
real-world datasets with the aim of validating the effectiveness
and superiority of our model. Specifically, we will answer the
following research questions to unfold the experiments.

RQ1: What about the effectiveness and superiority of the
proposed model in the group-level performance prediction task?

RQ2: Can the introduction of student-exercise interactions U
as auxiliary data effectively model the exercising behavior of
groups?

RQ3: What are the benefits of each component including the
dual-side relation graph, inter-group information enhancement,
and attention-based group representation aggregation in our
model?

RQ4: How do the hyper-parameters influence the effective-
ness of the proposed RDGT?

RQ5: Can our approach identify the representative individuals
and uncover potential collaborations among students?

A. Experimental Setting

1) Dataset Description: In this paper, we conducted
experiments on three public education benchmarks: ASSIST-
ment12 [52], NIPS-Edu [53], and SLP [54]. ASSISTment12
dataset is collected from ASSISTments online tutoring service
system and contains student exercising data for the school
year, which has been widely used in cognitive diagnosis
tasks. NIPS-Edu dataset comes from a diagnosis question
competition (i.e., the NeurIPS 2020 Education Challenge),
where students’ answer records to mathematics questions are
provided. As for SLP, is a dataset collected from an online
learning platform called Smart Learning Partner (SLP), which
intentionally records learners’ data from multiple dimensions
and subjects to provide rich content. Specifically, we selected
three sub-datasets in the SLP corresponding to three different
subjects as experimental data: SLP-math, SLP-biology, and
SLP-physics. All datasets above contain group labels (i.e., the
class to which the students belong), and students from the same
class share the same label category. We followed MGCD [13]
to construct two types of response records without overlap for
each dataset, i.e., student-exercise logs and group-exercise logs,
where the former indicates students’ responses on exercises,

while the latter denotes all students’ answers to the same
exercise within the same group and takes the correct rate as
the response result. To ensure reasonableness, we screened out
the groups with few than three students and fewer than two
response logs, and notably, students whose response counts are
substantially greater than the average are also eliminated. The
statistics of five datasets are shown in Table II.

2) Baseline Approaches and Evaluation Metrics: To ver-
ify the effectiveness of our proposed RDGT framework, we
compared it with several baselines. Specifically, the selected
comparison approaches fall into two categories. One category
is the representative CD methods (such as IRT, MIRT, MF, and
NeuralCD) and a state-of-the-art GCD method (i.e., MGCD).
The details are displayed as follows:
� IRT [6]: IRT is one of the most popular cognitive diagno-

sis methods, which performs unidimensional modeling of
student profiles and exercise attributes by a linear function.

� MIRT [7]: MIRT is a multidimensional extension of the
IRT model that models the characteristics of students and
exercises from multiple dimensions.

� MF [55], [56]: MF is a latent factor model aiming at pre-
dicting students’ exercising performance by factoring score
matrix and can obtain the latent trait vectors of students and
exercises.

� NeuralCD [9]: NeuralCD is one of the most representative
deep learning-based CD models. It leverages neural net-
works to explore and model the high-order and complex
interaction between students and exercises.

� MGCD [13]: MGCD is a state-of-the-art GCD framework
that models group-exercise responses from a multi-task
learning perspective to alleviate the interaction sparsity
problem.

In addition, we selected several competitive graph repre-
sentation learning methods as another category of baselines
including RGCN, SignedGCN, HGT, GraphTrans, and GATv2.
Specifically, they were introduced for representation learning
and followed by a neural diagnosis layer (11) for adapting the
group performance prediction.
� RGCN [57]: RGCN is a classical heterogeneous graph

learning method using multiple edge relations to model.
We constructed group-student-exercise interaction graphs
and used this strategy for information aggregation and
representation learning.

� SignedGCN [58]: SignedGCN leverages balance theory to
jointly model node associations in signed networks from
positively connected sets and negatively connected sets.
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TABLE III
EXPERIMENTAL RESULTS ON GROUP PERFORMANCE PREDICTION WITHOUT U

We introduce the student-exercise interaction results as
signed information.

� HGT [45]: HGT designs node- and edge-type dependent
parameters to characterize the heterogeneous self-attention
mechanism. We introduce it to model the student-exercise
graph.

� GraphTrans [59]: GraphTrans integrates GNN modules
and self-attention models for mining local and global in-
formation. We implemented GraphTrans by introducing
self-attention modules to learn node representations on the
student-exercise graph.

� GATv2 [60]: GATv2 works as an improvement of
GAT [36], which achieves a universal approximator atten-
tion function by modifying the operation order of neighbor
information aggregation. We introduce it into the modeling
of the student-exercise graph for learning the representa-
tions.

It is worth noting that since the traditional CD approaches
fail to provide a solution for group-level diagnosis with
student-exercise response data, the above baselines based
on the traditional CD are improved by learning student
representations separately and then aggregating them into
group representations on average for GCD task rather than
learning groups as individual units.

Group-level cognitive diagnosis is essentially a regression
task whose principal form is exhibited by predicting the correct
rate of a group for a given exercise. Thus, to evaluate the
performance of all methods, we used two popular metrics, i.e.,
root mean square error (RMSE) and mean absolute error (MAE).
Referring to [13], [16], in our experiments, we randomly split
the group-exercise interaction data of each dataset into two parts
in the ratio of 8:2 as the training set and testing set, respectively.
Meanwhile, we divide 90% as train data and 10% as validation
data respectively from the training set.

3) Parameter Settings: We implemented all models with Py-
Torch by Python and conducted our experiments on a Linux
server with two Nvidia GeForce GTX 1080Ti GPUs. All models
were tuned to have the best performance to ensure fairness.

To set up the training process, we initialized all network pa-
rameters with Xavier initialization [61]. Each parameter is sam-
pled from U(−

√
2/(nin + nout),

√
2/(nin + nout)), where

nin and nout denote the numbers of neurons feeding in and
feeding out, respectively. We use the Adam algorithm [62] as
the optimizer, where the learning rate was searched in [0.001,
0.005, 0.01, 0.015, 0.02]. The number of diagnosis layers L
(11) is set to 2 and the corresponding dimensions are 128 and
1, respectively. The coefficient γ was searched in [1e-4, 1e-3,
1e-2, 1e-1, 1]. The value of k in the inter-group information
enhancement module is set to 5. We adopt the cosine similarity
as the similarity calculation function sim(·) (1) and (2).

B. Performance Comparison (RQ1 and RQ2)

To answer RQ1, in this part, we validate the superiority of the
proposed RDGT. Specifically, we first conducted the groups’
performance prediction experiments in the above five datasets
that only contain group-exercise responses F . Table III shows
the experimental results of the proposed models’ performance
compared with the baselines. We highlighted the best results
of all models in boldface and underlined the suboptimal results.
According to the results, there are several observations. First, our
model has significant improvements over the baseline model on
all datasets. Especially, compared to the state-of-the-art method
MGCD, our model has an average 0.02 performance improve-
ment on all datasets in terms of both metrics and reaches even
a 0.04 improvement on the ASSISTment12 dataset. Second,
MGCD shows clear advantages over baselines with improved
group diagnostics using traditional CD methods, but it does not
outperform the graph-based baseline on several datasets such as
ASSISTment12 and SLP-math. This demonstrates the effective-
ness of introducing graph structures for modeling group-level
diagnosis. Finally, SignedGCN exhibits superiority compared
to RGCN, which demonstrates the feasibility of incorporating
student-exercise response results as edge features into the graph
structure for modeling interactions and learning representations.
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TABLE IV
EXPERIMENTAL RESULTS ON GROUP PERFORMANCE PREDICTION WITH U

In particular, we also implemented an intuitive comparison
model, called RDGT-Int, which models the student associations
within groups in an intuitive manner to learn representations.
Concretely, we explicitly modeled the behavioral similarity
between each student pair from the student-exercise exercising
data within groups, which is computed from the response records
on the same exercises for both. Then, we calculated the average
similarity within the group and used it as a threshold to filter out
student pairs above this value. Immediately after, we explicitly
added edges between these student pairs and used a two-layer
GCN [34] to learn the representation of student nodes for the
final group performance prediction. As can be observed from
the experimental results, RDGT-Int shows suboptimal perfor-
mance on several datasets such as NIPS-Edu and SLP-math,
which proves the validity and necessity of mining the potential
associations between students

In addition, to verify the feasibility as well as the validity of
the student-exercise response data U for our model, we further
conducted experiments by adding U (details in Section V-A1)
to the training process. The results as illustrated in Table IV.
It can be observed that with the inclusion of U as auxiliary
data, the performance of our proposed model has a certain
improvement and remains significantly superior, especially with
respect to MGCD modeled from a multi-task perspective. This
demonstrates that our model is effective for deeply mining the
correlation between the two types of instances and mitigating
group-exercise interaction sparsity.

C. Ablation Study (RQ3)

To answer RQ3, we conduct two ablation experiments to in-
vestigate the effectiveness of the proposed relation-guided graph
transformer model and the attention-based group representation
aggregation strategy, respectively. Due to the limited space, we
use three datasets including ASSISTment12, NIPS-Edu, and
SLP-math in the ablation experiments.

1) Investigation of Relation-Guided Graph Transformer: To
investigate the feasibility and effectiveness of the relation-
guided graph transformer model, an ablation experiment is

Fig. 3. Performance comparison of different modules.

conducted to observe the contributions of each component.
We propose three variants of RDGT: RDGT-S, RDGT-S+, and
RDGT-SE. RDGT-S means that only the student-side relation
graph is used for modeling. RDGT-S+ denotes modeling with
student-side relation graph and inter-group information. RDGT-
SE indicates the concurrent utilization of the dual-side relation
graphs (student-side and exercise-side) while discarding inter-
group information. As shown in Fig. 3, compared to RDGT,
several variants suffer relative performance degradation on three
datasets with respect to both metrics, especially RDGT-S shows
the most pronounced decrease tendency. The experimental re-
sults demonstrate the effectiveness of the dual-side relation
graph and the inter-group information enhancement module for
group-level modeling and diagnosis.

2) Investigation of Attention-Based Aggregation: In order to
observe the effectiveness of the attention-based group repre-
sentation aggregation mechanism, we compared it with sev-
eral aggregation strategies, including average aggregation, max
pooling, and min pooling. As illustrated in Fig. 4, the imple-
mented attention-based aggregation method achieves noticeable
performance improvements over other strategies in terms of both
rmse and mae metrics. It can be observed that the performance
of both max pooling and min pooling strategies decreases quite
significantly, indicating that the group structure embodies rich
information while specific individuals cannot simply replace the
group representation.
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Fig. 4. Performance comparison of different aggregation strategies of group
representation.

Fig. 5. Influence of the learning rate and the depth of diagnosis layer.

Fig. 6. Influence of the weight coefficient γ on ASSISTment12 and SLP-math
datasets.

D. Parameter Sensitivity Analysis (RQ4)

This part focuses on pointing out which hyper-parameters
affect our model. The analyzed hyper-parameters mainly in-
clude the learning rate, the depth of diagnosis layers, and the
weight coefficient γ. Due to limited space, we mainly show
the experimental results on the ASSISTment12 and SLP-math
datasets. Specifically, we searched for the proper value in a small
interval and set the learning rate as {0.005, 0.01, 0.015, 0.02,
0.025}, and reported the performance of RDGT with five values
{1, 2, 3, 4, 5} of the depth of diagnosis layers. As shown in
Fig. 5(a), we observe that 0.01 is sufficient for the learning
rate. With the increase of the rate, the performance shows a
trend of rising first and then falling, reaching the optimal value
at 0.01. As shown in Fig. 5(b), the model reaches the best
performance when the depth of diagnosis layers is 2. With either
too few or too many diagnosis layers, the performance of RDGT
declines, demonstrating that too few diagnosis layers cannot
model the complex interactions and too many layers are prone
to over-fitting. Meanwhile, to investigate the effect of different
values of γ on the performance of RDGT, we set the value list
of γ to be {1e-4, 1e-3, 1e-2, 1e-1, 1}, and the results are shown
in Fig. 6. It can be observed that the model achieves optimal
performance when the weight coefficientγ is 1e-2 and 1e-3 in the
ASSISTment12 and SLP-math datasets, respectively, and that
either too large or too small weights affect the final performance.

Fig. 7. Performance study of representative individuals of different propor-
tions.

E. Case Study (RQ5)

In this subsection, two case studies were performed on the
ASSISTment dataset to answer RQ5.

1) Case Study 1: Representative Individual Performance
Study of Different Proportions: In this case study, we tried to in-
vestigate whether the student representations learned by RDGT
are excellent and whether the information they contain can help
us identify representative individuals in the group. Thus, we
selected students proportionally from each group in the testing
set and then aggregated them into group representations for the
group performance prediction. Specifically, for each group on
the testing set, we obtained k clusters denoting subgroups of
different ability levels by clustering similarities in the represen-
tations of group members learned from the training process,
and then we proportionally selected students who are close
to the cluster center from each subgroup and aggregated their
representations. In particular, groups with extremely few student
members in the test set are excluded due to the requirements of
clustering, and we set k to 3 considering the group size. The
experimental results are shown in Fig. 7. We have the following
observations: 1) As the percentage of students drops from 100%
to 20%, there is a nearly 35% decline in MGCD in terms of
RMSE, while our RDGT only declines by 16%, demonstrating
the obvious advantage of our model in this task scenario as well.
This clear contrast can also be observed in the trend of the broken
line in the figure. 2) When the size of the student population
decreased by 40%, the performance of RDGT decreased by
only 7%, which proves that our model is effective in identifying
representative individuals and learning representations. It is
worth noting that similar to the computerized adaptive testing [3]
in the individual assessment, this is essentially a group-level
adaptive testing task, that is, how to accurately diagnose group
ability with only a fraction of the students in the group taking the
exercises. Simultaneously, it can support teachers to tailor their
teaching to student groups. Our model demonstrates impressive
potential and superiority under such goals.

2) Case Study 2: Individual Influence Mining and Analysis:
In addition, a case study of group proficiency observations was
performed in order to identify potential collaborations between
students and representative groups. Specifically, we used the
learned inter-student attention scores, which are extracted from
the last self-attention layer in the RDGT, as edge features on the
student relation graph. This characteristic reveals potential as-
sociations and collaborative information among students. Then,
we performed graph clustering based on the spectral clustering
method [63] on the student relationship graph using this edge
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Fig. 8. Mining and analysis of individual influence: (a) Illustration of collab-
orative information between individuals within a group; (b) Demonstration of
group proficiency on a specific knowledge concept in relation to the number of
potential clusters.

feature. As shown in Fig. 8(a), the group contains five students,
and the thickness of the edge between each student pair indicates
the learned association weight. It can also be observed that the
edge weights between nodes within the subgroup are larger than
those outside the subgroup. This demonstrates the existence
of potential subgroups within the group and that potential as-
sociations between students contribute to the mining of these
subgroups. Further, we also tried to explore whether the ability
of the group is somehow related to this number of potential
subgroups. We then performed a statistical information on the
groups after clustering, and the results are shown in Fig. 8(b). It
can be observed that groups with a higher number of potential
clusters have a tendency to be more capable. This finding is
beneficial for the mining and identification of representative
groups, as well as for facilitating other types of group level
diagnosis tasks (e.g., the mining of talented teams and the
discovery of outstanding teacher groups).

VI. CONCLUSION

In this paper, we proposed a novel group-level cognitive
diagnosis model, namely Relation-guided Dual-side Graph
Transformer (RDGT), which performs group representation
learning by adaptively mining the intrinsic relation of the stu-
dents within the group. Specifically, we first constructed dual-
side relation graphs, i.e., student-side and exercise-side, from
the group-student-exercise heterogeneous interaction data for
explicitly modeling associations between students and exer-
cises, respectively. Moreover, we implemented two improved
graph transformers by introducing relation encoding to better
capture the holistic information about the dual-side graphs
including node and edge features for representation learning.
Then, we designed a cognitive diagnosis module for learn-
ing the groups’ proficiency in specific knowledge concepts,
which includes an attention-based aggregation strategy and
a hybrid loss. Finally, extensive experiments on real-world
datasets clearly demonstrated the effectiveness of our model
and two case studies revealed that our model can be utilized
to identify representative groups and potential collaborations
among students. We hope this work could lead to further studies
on GCD.
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