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Point-of-Interest (POI) recommendation, an important research hotspot in the field of urban computing, plays

a crucial role in urban construction. While understanding the process of users’ travel decisions and explor-

ing the causality of POI choosing is not easy due to the complex and diverse influencing factors in urban

travel scenarios. Moreover, the spurious explanations caused by severe data sparsity, i.e., misrepresenting

universal relevance as causality, may also hinder us from understanding users’ travel decisions. To this end,

in this article, we propose a factor-level causal explanation generation framework based on counterfactual

data augmentation for user travel decisions, named Factor-level Causal Explanation for User Travel Decisions

(FCE-UTD), which can distinguish between true and false causal factors and generate true causal explana-

tions. Specifically, we first assume that a user decision is composed of a set of several different factors. Then,

by preserving the user decision structure with a joint counterfactual contrastive learning paradigm, we learn

the representation of factors and detect the relevant factors. Next, we further identify true causal factors

by constructing counterfactual decisions with a counterfactual representation generator, in particular, it can

not only augment the dataset and mitigate the sparsity but also contribute to clarifying the causal factors

from other false causal factors that may cause spurious explanations. Besides, a causal dependency learner

is proposed to identify causal factors for each decision by learning causal dependency scores. Extensive ex-

periments conducted on three real-world datasets demonstrate the superiority of our approach in terms of

check-in rate, fidelity, and downstream tasks under different behavior scenarios. The extra case studies also

demonstrate the ability of FCE-UTD to generate causal explanations in POI choosing.
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Joint Conference on Artificial Intelligence (IJCAI’20).
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1 INTRODUCTION

With the rapid development of smart mobile devices, Location-Based Social Networks (LBSNs)

have become ubiquitous in our daily lives. People use LBSN to visit a variety of locations (i.e.,
Point-of-Interest (POI)) in different categories, generating a large number of check-in logs (i.e.,
check-in behavior). For example, Foursquare had recorded 10 billion check-ins at 93 million POIs
frommore than 50 million users in this platform by 2016 [11]. The increasing log data becomes the
basis for exploring user preferences and recommending POIs interested but never visited for users.
As a result, POI recommendation has been extensively researched and achieved remarkable results
in recent years [10, 54, 63]. However, how to interpret recommendation results and understand the
process of decision-making is still an unignorable challenge, which is crucial for the transparency,
persuasiveness, and trustworthiness of recommendation systems [30, 61].

In the literature, some research utilized external data to generate explanations for traditional
recommendations, such as user ratings and reviews [4, 13, 36]. However, these efforts are lim-
ited by insufficient external data and incomplete feature selection, which cannot provide a univer-
sal solution. Besides, some works generated explanations by mining the relevance between items
from the sufficient data in the traditional recommendation scenario and achieved promising results
[1, 2, 6, 41]. However, most of the above works ignored a situation that some items with strong
relevance are not the reason (i.e., true causal explanation) for user decisions. And if we treat them
as explanations, then the spurious explanations will affect the validity and reliability of the model
and lead to difficulties in the execution of downstream tasks. Moreover, the data sparsity in city
travel is serious owing to the difficulty of collecting sufficient check-in logs and the limitation of
the scope of user activities, which further aggravates the aforementioned issue.
Actually, a user decision is composed of a set of factors, including user and item attributes.

In addition to being influenced by user and POI attributes, user decisions in city travel are also
susceptible to complex spatio-temporal factors (e.g., user query and check-in time, and geograph-
ical distances), which is different from traditional recommendation scenarios (e.g., e-commerce).
Figure 1 shows the check-in time distribution of KFC in two different areas and two user deci-
sions. In Decision1, Mike is a company employee and had lunch at the KFC near the company. The
category factor Fast Food of KFC and the check-in time Noon may be the true reason (i.e., true
causal explanation) why he checked-in this KFC, instead of the POI brand KFC (i.e., spurious ex-
planation). While in Decision2, Cindy is a student who went to KFC after school in the evening,
and the decision happened probably because she likes KFC. The check-in time distribution of KFC
also shows that visits to KFC in the business area are mostly concentrated at noon, while those in
the residential area are mainly concentrated in the evening, which is consistent with the analysis
above. In other words, the process of decision-making is caused by different spatio-temporal fac-
tors to varying degrees in different scenarios. Therefore, it is important to explore reasons for user
decisions and identify those true causal factors, which can further help us explore user preferences
and contribute to business planning. Indeed, mining causal factors of user travel decisions faces
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Fig. 1. Examples of user travel decision. The top part of this figure represents two user decisions that consists

of several factors. And the bottom part shows the check-in time distribution of KFC in two different areas

corresponding to user decisions, where different colors mean different time slots. Note that the red dashed

box indicates spurious explanations and the blue dashed box indicates true causal explanations.

two challenges: (1) Complex and diverse spatio-temporal factors in user travel scenarios make it
difficult to mine causal relationships of user decisions. (2) Severe data sparsity in user travel sce-
narios hinders the generation of true causal explanations. And spurious explanations will mislead
us and have an impact on model performance.
To this end, in this article, we propose a factor-level causal explanation generation framework

based on counterfactual data augmentation for user travel decisions, named Factor-level Causal
Explanation forUser TravelDecisions (FCE-UTD). Specifically, FCE-UTD ismainly composed
of three parts. In the Input Preparationmodule, each factor included in a user decision is embedded
initially. In the Relevant Factors Learning module, a joint counterfactual contrastive learning para-
digm is designed to optimize the embeddings of all factors in a pre-training manner. In particular,
the relevant factors will also be detected with a self-projection attention mechanism to score each
factor. Then in the Causal Explanation Learning module, we further identify causal factors from
those relevant factors based on a universal knowledge: Causality has strong relevance. A counter-
factual representation generator is designed to construct counterfactual decisions that can not only
augment the dataset and alleviate the sparsity but also contribute to clarifying the causal factors
from other spurious explanations. Along this line, a simple causal dependency learner is proposed
to rank the causal dependency for each factor in a decision, and, finally, factor-level causal expla-
nations would be generated by outputting the intersection of top factors with the highest causal
dependency and relevant factors. Overall, the primary contributions are summarized as follows:

— To the best of our knowledge, we are the first to generate factor-level causal explanations for
user travel decisions, which are susceptible to complex spatio-temporal factors. As a result,
a novel approach, named FCE-UTD, is proposed to mine the causal dependency among vary-
ing factors and user decisions, which can avoid generating spurious explanations by jointly
using real and counterfactual data.

— A novel joint counterfactual contrastive learning paradigm is designed with a self-projection
attention mechanism to learn the embedding of all factors and mine their relevant depen-
dency for user decisions.
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— We design a counterfactual representation generator to generate counterfactual decisions,
alleviating the data sparsity and contributing to exploring more potential causal factors with
a simple causal dependency learner.

— We conduct extensive experiments on three real-world datasets to evaluate our FCE-UTD
framework. The results demonstrate the superiority in terms of check-in rate, fidelity, and
downstream tasks (i.e., recommendation) under different behavior scenarios.

2 RELATEDWORK

Explainable recommendation systems not only output recommendation results but also generate
explanations to clarify why such items are recommended [61]. Traditional matrix factorization
methods focus on providing accurate recommendations to users while failing to interpret the hid-
den decision logic, which leads to the explicit factor model [62] and tensor factorization–based
methods [7]. Recently, different deep neural models are widely induced into recommendation sys-
tems, where the explanations can also be explored due to their powerful expressivity and flexi-
bility. For example, Reference [39] modeled user preferences and item attributes based on user
reviews by convolutional neural networks and attention mechanisms, and generated explanations.
Similarly, Reference [50] utilized the convolution operations and attention mechanism to high-
light the relevant semantic information from reviews, which can uncover user preferences and
improve explainability for recommendation. Reference [9] proposed a deep model based on at-
tentive multi-view learning to mitigate the tradeoff between accuracy and explainability. Refer-
ence [44] incorporated auxiliary knowledge with memory networks for sequence to sequence
modeling and obtained explanation based on the annotations produced by attention mechanism
over memory. Reference [20] designed a context-prediction task that maps user or item IDs onto
words to be generated by the explanation task and then presented a personalized Transformer
to make recommendations and generate explanations simultaneously based on IDs. Furthermore,
researchers have been exploring knowledge graphs (KG) that contain rich information about
users and items to generate more intuitive explanations for recommended items. Reference [16]
constructed a knowledge graph to mine the attribute-level preferences for recommendation and
then generated explanations based on attributes that have an impact on prediction. Reference [53]
proposed a policy-guided path reasoning method to reason over knowledge graph and generate
explanations with reasoned paths. Reference [24] proposed to integrate explainable rule induction
in knowledge graphs with a rule-guided recommendation model and translate the mined inductive
rules into explanations. Unlike previous KG-based explainable recommendation works, Reference
[32] analyzed user’s reviews and ratings on items to construct a sentiment-aware knowledge graph
that can reason more convincing explanations with a sentiment-aware policy learning methods.
As for the scenarios of urban POI travel, the related literature is limited. Reference [51] developed
a topic model for explainable hotel recommendations that generates a topical word cloud expla-
nation on hotel features. Reference [14] studied user decision profiling with a scalar projection
maximization objective and generated explanations based on the identified key factors. In sum-
mary, different models generated explanations for POI travel in different ways, i.e., the topic model
and the identification of key factors. However, these methods mostly described how to learn the
relevance between corresponding items and therefore might be mislead by spurious explanations.
Conversely, our approach focuses on mining causality from relevance, which aims to reduce the
impact of spurious explanations and identify true causal explanations.
Contrastive learning is a kind of self-supervised learning, which was widely used in Computer

Vision and Natural Language Processing (NLP) fields. It learns quality discriminative represen-
tations by constructing positive and negative instances [59]. Reference [31] proposed InfoNCE
loss, which maximizes the mutual information between positive sample pairs and minimizes
the mutual information between negative sample pairs, to learn latent feature representations.
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Reference [38] constructed triplets, which consists of two matching face images and a non-
matching one, to learn feature representations of images by separate the positive pair from the
negative by a distance margin in an end-to-end architecture.
Due to the flexibility and promising performance of contrastive self-supervised learning, it has

recently become a research hotspot among recommendation methods based on self-supervised
learning [17]. Reference [49] first applied contrastive learning to graph-based recommendation. It
generated two different graph views based on the user–item intersection graph, and performed the
node self-discrimination task on positive and negative node pairs in different views respectively, to
learn more generalized representations. Reference [23] perturbed the L-hop ego-network of each
node with a stochastic edge dropout and obtain two augmented neighborhood subgraphs, then
maximized agreement between node representations learned on the two subgraphs. Reference [40]
utilized item ratings and corresponding review semantics to generate feature-enhanced edges and
construct a review-aware user–item graph with these edges, then designed a contrastive objective
that maximizes the mutual information between the review representation and the correspond-
ing interaction representation. To capture local and global collaborative relations in user–item
intersections, Reference [52] constructed two views, including a user–item interaction graph and
a learnable hypergraph, then proposed a hypergraph-enhanced cross-view contrastive learning
architecture based on the two graphs.
Recently, contrastive learning has been applied to POI recommendations. For example, Refer-

ence [55] adopted a random sampling methods to augment user check-in sequences and then pro-
posed a contrastive self-supervised learning framework with the generated sequences to improve
the POI recommendation. Different from Reference [55], which only considered random sampling
to augment check-in sequences, Reference [22] substituted POIs with highly correlated POIs to
maintain the correlations in check-in sequences and enhance the robustness. Reference [8] first
modelled users’ intent distributions from all user check-in sequences via clustering and then fused
the learnt intents into a POI recommendation model with a new contrastive objective to improve
model robustness. Reference [35] extracted preference proxies from check-in sequences and uti-
lized them to improve POI embedding quality via a contrastive objective. Moreover, Reference [65]
proposed a Bidirectional Encoder Representations fromTransformers (BERT) based model
with four auxiliary self-supervised objectives to learn user and POI representations. For our work,
the proposed contrastive learning module that is based on mined relevant factors can learn more
accurate and robust representations effectively.
Counterfactual perspective aims to answer a question related to the factual world (i.e., the ob-

servational data) and the counterfactual world: “What would...if...?” [47]. In short, it is to apply
a perturbation to the original data and observe how results change. Many researchers designed
explainable and robust models from counterfactual perspective, which have achieved remarkable
results [18, 19, 42, 43, 48]. For example, Reference [43] designed a counterfactual explainable rec-
ommendation framework, which generates explanations based on counterfactual changes on item
aspects. Reference [48] introduced a framework to eliminate popularity bias in recommendation,
which adopted counterfactual reasoning to estimate the direct effect from items to ranking scores,
and removed it to eliminate bias.
In addition, another important application of the counterfactual perspective is to augment data

to alleviate the data sparsity. Reference [47] designed heuristics and learning-based methods with
counterfactual perspective to enrich user behavior sequences and improve the recommendation
performance. Reference [56] generated extra training samples via changing the users’ feature-level
preferences, to alleviate the data sparsity for improving review-based recommendation. More-
over, Reference [58] generated extra informative training samples with a learning-based inter-
vention method to mitigate the exposure bias caused by data sparsity. Reference [29] adopted
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Table 1. Factors in POI Travel Behaviors

Type POI Travel

User-related
User identifier,

Frequency of visiting different POI categories

POI-related POI identifier, Category, Brand, POI popularity

Spatio-temporal related
Check-in time, The day of the week, Time session of query,

Location distance between query and check-in POI

reinforcement learning to build counterfactual generators for generating high-quality counterfac-
tual intersections and learned a recommender from factual and counterfactual interactions to re-
move spurious correlations. Our work could also be classified as this category, and we achieve the
idea of a counterfactual perspective in urban POI travel by constructing factor-level counterfactual
user decisions and generating causal explanations.

3 PROBLEM DEFINITION

In this section, we formally define the prediction problem of user decision check-in rate and its
factor-level causal explanation generation problem. We start by defining some basic concepts and
notations. The types of factors and the mathematical notations used in this article are listed in
Table 1 and Table 2, respectively. Note that we use bold for representation vectors and calligraphic
fonts for sets to achieve a clearer description.

Definition 1 (Factor). A factor f denotes an item that has an impact on the user’s decision process,
with a concrete explanation. We define the set of all factors as F and the factor lookup table as E.

Similarly to previouswork [14], we definewell-designed factors with practical meanings to guar-
antee the interpretability of user decisions as well as generated causal explanations. To consider
all aspects of influence as much as possible, we define three types of factors as shown in Table 1,
i.e., user-related, POI-related, and spatio-temporal related.
First, user-related factors include the user identifier and the frequency of different POI categories

they frequently visited. The former is used to model distinct impacts of different users and the
latter can reflect their preferences. Second, POI-related factors contain POI identifier, category,
brand, and POI popularity. The POI identifier can distinguish the impact of different POIs, which
is similar to the usage of user identifiers. Besides, the POI popularity is defined in a similar way
to Reference [14], we divide the continuous popularity into six levels according to the standard
scores z of log-scaled popularity: (i) strongly unpopular if z ≤ −1, (ii) unpopular if z ∈ (−1,−0.5],
(iii) weakly unpopular if z ∈ (−0.5, 0], (iv) weakly popular if z ∈ (0, 0.5], (v) popular if z ∈ (0.5, 1],
and (vi) strongly popular if z > 1. Third, spatio-temporal related factors are the time relevant to
user decision, e.g., arriving hour, the day of the week, and the time session of user query POI. In
addition, the location distance between user check-in and query POI is also considered. We divide
the distance into five levels: (i) 1 km and less, (ii) 1 km–3 km, (iii) 3 km–7 km, (iv) 7 km–15 km, and
(v) 15 km and more.

Definition 2 (Decision). In the POI travel scenario, a decision D represents a user check-in and
consists of a set of factors, i.e., D = { f1, . . . , fn}. We define the set of all decisions as D. For
convenience, we use F to denote all factors in D.

Definition 3 (Causal Relation). Suppose there are two variables A and B. If A leads to B, then
there is a causal relation A ⇒ B, where A and B are cause and effect, respectively.

It is worth noting that, given a decision D = { f1, . . . , fn}, all factors in D are considered as its
potential causes.
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Table 2. Mathematical Notations

Symbols Description

n The number of factors that compose a decision;
m The number of sampling counterfactual representations for each decision;

D = { f1, . . . , fn} A user travel decision composed of n different factors;
fi , F

D The ith factor and all factors in D;
FD
rel

The relevant factors of D;
r̂ (D), r (D) The empirical and predictive check-in rate for decision D;
W1,W2,W3 The trainable matrices parameters of MLP in sparse likelihood estimator;

Δn−1 The n-dimensional probability simplex;

Ld , Lc
The BCE loss for optimizing decision structure learner and
the counterfactual contrastive triplet learning paradigm;

δ ,γ The margin in Lc and the hyper-parameter to control the contribution of Lc ;

k1,τ
The replacement number in counterfactual contrastive learner and the
corresponding hyper-parameter;

k2 The number of highest causal dependency pairs selected;
G The VAE-based counterfactual representation generator;

d(·, ·) The Euclidean distance function;
R(·) The check-in rate prediction model in the relevant factors learning module;

Qθ (z |x),pϕ (x |z) The inference network and generation network in G;
p(z) The prior distribution in G;
λ The trading-off hyper-parameter in G;

(F̃i
D
, ỸD

i ) The counterfactual decision–label pairs of D;

(F̂Di , Ŷ
D
i ) The augmented decision–label pairs of D;

( f̂ Dij , Ŷ
D
i ),T The unique factor–label pairs extracted from SD and their number;

H The one-hot vector of the T unique factor–label pairs;
θD The trainable causal dependency of the T unique pairs;

fi , f̂i The factor embedding and the attention factor embedding of fi ;

F , F̂ The factor embedding matrix and the attention embedding matrix of decision D;
E The embedding lookup table of all factors;

Pi j ,P The scalar projection of fj on fi and the scalar projection matrix;

P̂i : The representation after applying softmax to each row of P ;

l , l̂
The dense likelihood vector obtained via MLP and the sparse likelihood vector
obtained by applying sparsemax on l ;

d The aggregated relevant embedding of D;
f ′ The sum of all factor embeddings in D;

Fp , Fn
The positive and negative counterfactual samples obtained by transforming
the original decision in counterfactual contrastive learner;

F ci The ith counterfactual representation for D obtained by sampling from G;

F̃i
D The factors embeddings of mapped counterfactual representations

(i.e., counterfactual decisions) for D;
D,F The set of all user travel decisions and all factors;
D− The set of negative decisions;
E The causal explanation for a decision D;
SD The set of augmented decision–label pairs of decision D;
C The factor parts of top-k2 causal dependency pairs;
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Fig. 2. Illustration for the relationship between various factors. The factors with high relevance to a decision

are regarded as relevant factors, while the rest that have minor impact are supporting factors. Besides, causal

factors have strong relevance and are a subset of relevant factors. They constitute the true causal explanation

of a decision.

Definition 4 (Causal Explanation of Decision). Given a decision D = { f1, . . . , fn}, if there exists
a factor fi in { f1, . . . , fn} that is the cause of D, then fi is regarded as a causal factor and a part
of the causal explanation of decision D. Noting that the causal explanation may consist of one or
more factors.

To discover the causes of one decision, i.e., the true causal explanation, in its potential causes,
we can utilize likelihood estimation to model the probability of each candidate pair (fi ,D) being a
causal explanation.

Problem 1 (Check-in Rate Prediction). Given the particular set of factors related to a decision

D, the problem of check-in rate prediction aims to predict the probability of D, which can also be seen
as a classification problem.

For each decisionD, we denote its predictive check-in rate as r (D), where r (D) > 0. Note that for
historical decisions made by users, i.e., users’ check-in history, we define their empirical check-in
rate r̂ (D) as 1 and call them positive decision instances. Conversely, we define the empirical check-in
rate r̂ (D) of negative decision instances as 0, which will be explained in detail later.

Problem 2 (Causal Explanation Generation). Given a positive decision D, we generate a

causal explanations E, which consists of one or more factors { f ′1 , . . . , f
′
m}, indicating E ⇒ D.

4 METHODOLOGY

In this section, we introduce our factor-level causal explanation generation framework in detail.
First, our work is actually inspired by the following conjecture.

Conjecture 1 (Causality Has Strong Relevance). Relevance reflects the degree to which two

variables are associated with each other, which is only a necessary but insufficient condition for causal-

ity. However, in turn, having causality is inevitably accompanied by strong relevance, which implies

a special kind of relevance.

The relationship among relevant, causal, and other supporting factors can be illustrated in
Figure 2. Note that the term “relevance” is also expressed as “correlation,” and we use the former
for better understanding. Along this line, for each decision, we tend to identify relevant factors
first, and further mine causal factors from them to obtain the true causal explanation. Specifically,
the overview of FCE-UTD framework is illustrated in Figure 3, which consists of three parts, i.e.,
Input Preparation Module, Relevant Factors Learning Module, and Causal Explanation Learning
Module, as follows:
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Fig. 3. Framework overview of FCE-UTD. Three modules are included: Input Preparation, Relevant Factors

Learning, and Causal Explanation Learning.

— Input Preparation Module. This module aims to initialize the embedding for each factor and
compose decisions. We take a user decision composed of several factors as input, and the
d-dimensional embedding of factors is obtained through the embedding layer.

— Relevant Factors Learning Module. This module aims to learn factor embeddings and iden-
tify relevant factors. Specifically, We first developed Self-Projection Attention mechanism to

update the factor embedding matrix F into F̂ with the pairwise scalar projection matrix as

the attention matrix. Then F and F̂ are input to Sparse Likelihood Estimator to evaluate the
likelihood of each factor to be a relevant factor. Finally, to learn the accurate and robust em-
beddings of all factors and representations of user decisions, two additional sub-modules are
designed with two different objectives: Decision Structure Learner aims to predict the user
decision based on the embeddings of relevant factors, where the Binary Cross-Entropy

(BCE) loss function is used with the user decision labels as the supervision. Counterfactual
Contrastive Learner turns to distinguish the different impacts of relevant and supporting fac-
tors on the representation of user decisions, where the contrastive loss function is used with
the counterfactual user decision samples as contrastive samples.

— Causal Explanation Learning Module. This module is used to mine the true causal explana-
tions with the relevant factors as potential candidates. Specifically, with the representation
F of a user decision from the trained Relevant Factors Learning module, we first developed
a Counterfactual Representation Generator to generate m counterfactual representations. It
adds continuous noise on each factor embedding of F with a pre-trained Variational Auto-
Encoder (VAE) to obtained counterfactual representation {F c

1
, . . . , F cm}, and maps each

noised factor embedding into the real-world factor embedding, which results in the real

counterfactual decisions {F̃1, . . . , F̃m}. Then, in Causal Dependency Learner, a simple causal-
ity digging sub-module is designed to infer the causal dependencies of each factor for a
user decision by using the sum of the causal dependency scores of each factor to model
the possibility of counterfactual decisions. In particular, the counterfactual decisions of the
counterfactual representations are produced by the trained Relevant Factors Learning mod-
ule. Finally, in Causal Explanation Generator, we use the intersection of the top factors with
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the highest causal dependency and the original relevant factors to generate the causal expla-
nation of this user decision.

Next, we will introduce the two main modules in our framework, i.e., Relevant Factors Learning
Module and Causal Explanation Learning Module.

4.1 Relevant Factors Learning Module

A user decision consists of several factors that jointly influence the decision-making process. How-
ever, intuitively, it is unlikely that all factors will be crucial for a decision, thus we distinguish
between the concepts of relevant and supporting factors based on the degree of influence (Noting
that, we denote “relevant factors” as those factors with relatively strong relevance for convenience).
Specifically, we learn the representations of all factors, and compute an aggregated relevant em-
bedding for each decision, which is considered as the weighted combination of relevant factor
embeddings. Then we preserve decision structures by maximizing the sum of scalar projections of
each factor embedding on the aggregated embedding, which can emphasize the impacts of relevant
factors and reduce the impacts of supporting factors.

4.1.1 Self-Projection Attention. As described in our previous work [14], a relevant factor should
be supported by a lot of other factors that project a large scalar on the relevant factor. To evaluate
the probability of each factor becoming a relevant factor, a lightweight self-projection attention is
introduced to compute a projected embedding for each factor, which reflects the contribution of
other factors to the current factor for learning the likelihood later.
Specifically, given a decisionD = { f1, . . . , fn} and its factor embeddingmatrix F = [f1, . . . , fn]T ,

we first compute the scalar projection of fj on fi to obtain the pairwise scalar projection matrix
P ∈ Rn×n ,

Pi j = f Ti fj/| fi |. (1)

Then we normalize P by applying softmax function to each row,

P̂i : = so f tmax(Pi :), i = {1, . . . ,n}. (2)

Next, for each factor fi , the attention embedding that indicates the sum of the impacts of other
factors on it can be formulated as

f̂i =
n∑
j=1

P̂i j fj , (3)

and the attention embedding matrix is F̂ = P̂F ∈ Rn×d .

4.1.2 Sparse Likelihood Estimator. We evaluate the likelihood of each factor being a relevant
factor from sparse likelihood perspective. To integrate information about each factor itself and
the influence of other factors on it, we concatenate the original embedding of the factor and the

projection attention embedding, F ⊕ F̂ , and then input it intomulti-layer perception (MLP)with
Dropout and ReLU activation to obtain a dense likelihood vector l ∈ Rn ,

l = MLP(F ⊕ F̂ ). (4)

We use three-layer MLP here, and the trainable matrices parameters areW1 ∈ R2d×d ,W2 ∈ Rd×d ,
andW3 ∈ Rd×1, respectively. Now, l contains information about itself and other factors and indi-
cates those factors with a large impact (i.e., large scalar projection).
Since l is a dense vector, we expect to sparse it to obtain relevant factors. We use the convenient

sparsemax [26] to normalize l , which will output sparse probabilities,

l̂ = sparsemax(l) = argmin
p ∈Δn−1

|p − l |, (5)
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where Δn−1 = {p ∈ Rn |1Tp = 1,p ≥ 0} is the n-dimensional probability simplex and sparsity is

ensured by Euclidean projection onto Δn−1 [14]. The vector l̂ is a sparse normalized vector, which
indicates relevant factors and their contribution to the decision. Note that we cannot explicitly
specify the number of relevant factors, so we further adopt an L2 regularizer on the unnormalized
l before sparsemax to control it flexibly. The larger L2 weight is, the more relevant factors can be
identified.

4.1.3 Decision Structure Learner. After obtaining the sparse likelihood vector l̂ , we can compute
the aggregated relevant embedding d of decision D,

d =
n∑
i=1

l̂i fi = l̂
T F . (6)

Intuitively, this embedding d should preserve the user decision structure as much as possible,
i.e., the information in all factors in D. Therefore, we hope to maximize the scalar projection of all
factors in D on the aggregated relevant embeddings for each real user decision, i.e.,

max
F

f ′Td/|d |, f ′ =
n∑
i=1

fi . (7)

Noting that the sparse likelihood l̂ puts more weight on the relevant factors, this objective will
enhance the influence of relevant factors, and reduce the influence of supporting factors.
Specifically, to train representations for all factors based on Equation (7), we need both posi-

tive and negative decision instances [45]. As stated in Problem 1, we define historical decisions
made by users as positive instances, and the empirical check-in rate r̂ (D) is 1 (i.e., label = 1). For
each positive decision instance, we generate several negative decision instances by replacing POI-
related factors (e.g., replacing the POI with the same category) and define their empirical check-
in rate as 0 (i.e., label = 0). We further define r (D) as the predictive check-in rate, obtained by
r (D) = σ (f ′Td/|d |). Along this line, we should maximize r (D) for positive instances, while mini-
mizing r (D) for negative instances due to the spurious combination of factors. Therefore, we apply
a binary cross-entropy loss function that makes the prediction distribution close to the empirical
distribution, thus optimizing the factor representations,

Ld =
1

|D ∪ D−|

D∪D−∑
D

−[r̂ (D)loд(r (D)) + (1 − r̂ (D))loд(1 − r (D))], (8)

where D− is the negative decision set. Obviously, the objective maximizes the scalar projection
f ′Td/|d | on positive decision instances while minimizes f ′Td/|d | on the negative.

4.1.4 Counterfactual Contrastive Learner. To mitigate the impact of severe data sparsity on the
causal analysis of decisions in urban travel scenarios, we construct counterfactual distribution
decision samples to learn more accurate and robust factor representations. Briefly, a counterfac-
tual decision sample is first generated by transforming the factor representations F ∈ Rn×d of a
decision. Then a contrastive learning paradigm is proposed to optimize F .
Specifically, inspired by Reference [60], we introduce an inductive bias before describing how

to construct counterfactual decision samples: With the description in Section 4.1.3, we can define

the relevant and supporting factors based on the sparse likelihood vector l̂ . We believe that the
replacement of relevant factors will have a large impact on the occurrence of a decision, because
changes of several factors that are most important will influence the user decision-making pro-
cess and the original semantics of the decision will change. We define these decision samples with
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relevant factors replaced as negative counterfactual samples, i.e., with a large semantic change com-
pared to original decision samples. On the contrary, if the supporting factors are replaced, then
it will have a smaller impact on the occurrence of the decision and its semantics should remain
unchanged. Thus, we define the decision samples whose supporting factors are replaced as positive
counterfactual samples. For convenience, we select k1 factors with the highest (lowest) likelihood

probability according to l̂ , then replace them randomly from F/F , and regard them as negative
(positive) counterfactual samples. Note that F represents all factors that compose the original de-
cision, and k1 is determined by a hyper-parameter: k1 = τ ∗ n, where τ is a ratio hyper-parameter
to control the replacement number.
To learn a more accurate and robust factor representations, we propose a targeted and effective

contrastive learning paradigm. Intuitively, a robust decision representation should rely primarily
on its relevant factors rather than supporting factors with minor impacts. Therefore, the positive
counterfactual decision sample should be close to the original decision sample in the latent space,
while the negative counterfactual decision sample should be far from the original one. Therefore,
we perform contrastive triplet learning on original decisions and counterfactual samples (i.e., pos-
itive and negative),

Lc =max{d(F , Fp ) − d(F , Fn) + δ , 0}, (9)

whered(·, ·) is the Euclidean distance between original factor embeddings F and factor embeddings
of counterfactual samples (i,e., Fp and Fn ), and δ is themargin that widens the gap betweend(F , Fp )
and d(F , Fn).

4.1.5 Factors Learning Objectives. We train factor representations under the supervision of two
objective Ld and Lc ,

O = Ld + γLc , (10)

where γ is a parameter to control the contribution of Lc . After training the above objective, we
not only obtain accurate and robust factor representations but also can distinguish relevant and
supporting factors.

4.2 Causal Explanation Learning Module

In this section, we introduce how to mine the true causal explanations of users’ travel decisions
after obtaining the relevant factors (i.e., factors with strong relevance to the decision) in detail.
From the previous description, not all relevant factors are true causal factors. Other spurious

explanations, referring to the relevance between two variables that appear to be causal but are
not actually, may damage the recommendation results for urban traveling. As a result, the model
validity and reliability will not be guaranteed [29], which may lead to difficulties in the execution
of downstream tasks. Therefore, here, we turn to remove the spurious explanations and find the
real causal factors from relevant factors mined by the Relevant Factors Learning Module in Sec-
tion 4.1. To achieve this, we first generate counterfactual decision representations based on the
original decision distribution with a pre-trained Variational Auto-Encoder. Note that the counter-
factual decision representations here are different from those generated in Section 4.1.4. Then, for
a decision, we learn the causal dependency for each factor with a logistic regression model. Finally,
we infer the true causal explanation from the top factors with the highest causal dependency and
original relevant factors.

4.2.1 Counterfactual Representation Generator. To obtain the true causal explanation for a de-
cision, we first need to explore influence of factors in the decision more deeply. Inspired by the
recent success of counterfactual data augmentation techniques in the field of NLP [66] and rec-
ommendation systems [47], we explore the relationship between one decision and various factors
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from a counterfactual perspective. Formally, the counterfactual inference aims to answer ques-
tions related to “what if ” in our cases: “What would happen if we replace factors in a decision?”
Specifically, given factors in a decision and their representations, we replace some factors (e.g.,
time or location) and obtain extra counterfactual decisions to explore the impact of each factor on
this decision. However, an intractable problem is that the number of factors in the urban travel
scenario is huge, and the amount of possible counterfactual decisions is very large if each factor
is randomly replaced, making the process of training impractical.
Considering that if we replace factors randomly in a decision, then the generated counterfactual

decision data will be far from the semantics of original decisions. As previous work [28, 43] sug-
gested, we tend to obtain counterfactual decisions that are similar but different from the original
decision, which can maintain a greater degree of semantics. Given the rapid development of gen-
erative models, we adopt VAE, which has been widely used in several fields [5, 12] in recent years,
to learn the latent distribution of original decision data. Specifically, we first pre-train a VAE-based
counterfactual representation generator to generate counterfactual representations based on the
original decision D. Briefly, with the trained Relevant Factors Learning Module, we can obtain the
factor embedding matrix F for each user decision D, then we input it to the inference network
Qθ (z |F ) (i.e., encoder) to obtain an approximate posterior Gaussian distribution of the latent em-
beddings z. Afterwards, several embeddings z are sampled from this distribution with different
Gaussian noise, and the conditional generation distribution is computed by the generation net-
work pϕ (F |z) (i.e., decoder). The training objective of the counterfactual representation generator
is

max
θ,ϕ

{λEz∼Qθ (z |F )[lnpϕ (F |z)] − (1 − λ)KL[Qθ (z |F )‖p(z)]},

Ez∼Qθ (z |F )[lnpϕ (F |z)] = MSE(F , F c ),
(11)

where p(z) is the prior distribution, and Gaussian distribution is generally used, F c is the coun-
terfactual representation generated by decoder. The first part (i.e., reconstruction loss) in Equa-
tion (11) aims to improve the reconstruction quality of generated representations, and the second
part (i.e., Kullback–Leibler divergence) measures the distance between the posterior and prior dis-
tribution, which constrains the similarity between the generated representation and the original
decision representation, reflecting the generation ability of the counterfactual representation gen-
erator. Here λ is a trading-off parameter to balance the above two parts. For simplicity, we denote
the counterfactual representation generator asG in next sections.
With pre-trained the VAE model, for each original decision D, we input its factor embeddings

F into the VAE encoder and sample m latent embeddings z with different noises, then generate
m counterfactual representations {F c

1
, . . . , F cm} through VAE decoder. Since factors in generated

counterfactual representations are in latent space, so they cannot represent real-world factors now.
For interpretability, we compute the cosine similarity between each counterfactual factor and those
in F/F and map it to the nearest real-world factor. Note that we keep the original user and POI
identifiers, since we should keep the most essential factors in a decision to maintain the essential

semantics. The mapped counterfactual representations {F̃1, . . . , F̃m} are called counterfactual de-
cisions. Specifically, given a decision D, we denote the factors of each counterfactual decision and

their embeddings as F̃i
D
and F̃i

D
, respectively.

4.2.2 Causal Dependency Learner. After obtaining counterfactual decisions, we will integrate
them with the original decision and learn the probability of each factor becoming a causal factor
(i.e., causal dependency).

Specifically, for each original decision D, we first input its counterfactual decisions F̃D into the
check-in rate prediction model trained by Equation (10) in Section 4.1 to predict the label for each
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Fig. 4. Illustration of the causality digging sub-module. We first extract unique pairs from the original deci-

sion and the correspondingm counterfactual decisions. Then, each pair is assigned a corresponding causal

dependency score θi . Finally, we utilized the original decision and the counterfactual decisions to infer causal
dependencies with a logistic regression.

counterfactual decision, and we denote the obtained label set as ỸD = {ỸD
1 , . . . , Ỹ

D
m }

ỸD
i = R(F̃D

i ), (12)

where R(·) stands for our check-in rate prediction model in Section 4.1. Recall that the label indi-
cates whether the decision will happen. Then, for each original decision D, we obtain the set of
augmented decision–label pairs:

SD = {(F̃Di , Ỹ
D
i )}mi=1 ∪ {(FD ,YD )}, (13)

where m is the number of counterfactual decisions, FD and YD are factors that compose D and
the corresponding label, respectively. To identify causal factors that constitute the true causal
explanation from relevant factors in a decision, we define a trainable causal dependency θD to
model the causality of each factor. For each decision D, we will learn causal dependencies through
the proposed causality digging model after obtaining the augmented decision–label set SD . For

convenience, we define each pair inSD as (F̂Di , Ŷ
D
i ), which can denote pairs in the original decision

or counterfactual decisions.
Inspired by References [3, 57], we tend to learn causal dependencies between ŶD

i and each factor

f̂ Dij that composes F̂Di with likelihood estimation, where j = 1, . . . ,n. Then, we infer the causal

explanation of the decision with causal dependencies. The idea is further illustrated in Figure 4.
Specifically, given a decision D and its decision–label pair set SD , we first extract unique factor–

label pairs ( f̂ Dij , Ŷ
D
i ) from all decision–label pairs and denote the number of unique pairs as T .

Afterwards, we denote θD = {θD1 , . . . ,θ
D
T } as the trainable causal dependency of the correspond-

ingT unique pairs. Note that the reason for extracting unique factor–label pairs is that if the same
pairs appear in different decisions (i.e., original and counterfactual decisions), then they represent
the same causal dependency. For simplicity, we hide the superscript D of θ . To infer causal depen-

dencies, we propose to use the sum of the causal dependency scores of each factor in F̂Di to model
the possibility of the current decision with logistic regression. And the frequency of input factors
in augmented decisions will determine the score of causal dependencies.

In particular, for unique factor–label pairs extracted from F̂Di with corresponding label ŶD
i , we

first represent them with one-hot encoding and denote them as H = {0, 1}T . And we model the
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possibility of ŶD
i as

P(ŶD
i |F̂Di ) = σ (θTH ), (14)

where σ (x) = 1
1+e−x is the sigmoid function. The possibility of each decision–label pair in SD

should be close to 1 from the maximum likelihood perspective, so we infer causal dependencies
by maximizing their occurrence probability.

4.2.3 Causal Explanation Generator. After training the logistic regression model in Equa-
tion (14), we can distinguish false and true causal factors for an original decision and generate
causal explanations through the learned causal dependencies. Specifically, we choose factors with
the highest causal dependency θ and generate causal explanations by several steps:

— First, we pick out factor–label pairs in SD that have the same label as the original decision

(i.e., ŶD
i = Y

D = 1) and sort these pairs according to their causal dependencies in descending
order. Note that these factor–label pairs include those in the original decision.

— Second, we choose the top-k2 pairs and extract their factor parts C = { f̂1, . . . , f̂k2 }.
— Third, we take the intersection of C and the set of relevant factors FD

rel
of the original deci-

sion, and denote them as E. For convenience, we set the number of relevant factors as k1,
similar to that in Section 4.1.4. If there are one or more factors in E, then we regard them
as causal factors of this original decision D, and we will construct E ⇒ D as the causal
explanation of D.

Note that we set k2 = 1 by default. And we treat those factors in FD
rel

, which do not constitute
causal explanations as false causal factors, which may cause spurious explanations. The model
fidelity [61] will be reported to showwhat percentage of decisions can be explained by our method
and further compared to the association rule mining model (AR) [33].
In summary, the whole pipeline of our FCE-UTD framework can be found in Algorithm 1.

5 EXPERIMENT

In this section, we conduct extensive experiments on third real-world datasets to evaluate our
FCE-UTD framework. Specifically, our experiments aim to answer the following questions:

— Q1: How about the effectiveness of FCE-UTD on check-in rate prediction task and the cov-
erage of explanation for user decisions? (Section 5.2)

— Q2: How about the effectiveness of each components in FCE-UTD? (Sections 5.3–5.4)
— Q3: How do learned causal factor representations perform in downstream recommendation

tasks on both regular and out-of-distribution (OOD) datasets? (Section 5.5)
— Q4: How about the quality of generated explanations and whether our study can provide

explanations for user travel decisions? (Sections 5.6 and 5.7)

5.1 Experimental Setups

Datasets.To demonstrate the effectiveness and generalization of our FCE-UTDmodel, we not only
apply it in POI travel scenarios but also in traditional recommendation scenarios. Specifically, we
use two POI recommendation datasets, i.e., Shanghai (SH) and New York (NY) and a movie rec-
ommendation dataset, i.e.,movielens 1m (ml1m). In particular, we consider the rating behavior
in ml1m as check-in behavior for exhibiting the model generalization ability of FCE-UTD.

— SH was produced by a third-party map service platform from Shanghai, which contains user
map query and POI check-in records. Similar to the dataset used in Reference [14], each
query consists of an anonymous user identifier, a time stamp, a location and some queried
POIs. For each query, we constructed a positive decision instance if the user visited at least
one of queried POIs in the following three days, and constructed negative decision instances

ACM Trans. Inf. Syst., Vol. 42, No. 5, Article 128. Publication date: April 2024.



128:16 H. Li et al.

ALGORITHM 1: Factor-level Causal Explanation For User Travel Decisions

Input: user decision set D, the negative decision set D−, factor lookup table E,
check-in rate prediction model R, counterfactual representation generator G,
counterfactual sample timesm, causal dependency θ ;
Output: causal explanation E = { f ′i };

1 Initialize E, P , G, R;

2 ### Relevant Factors Learning Module

3 repeat

4 for D = { f1, . . . , fn } ∈ D ∪ D− do

5 Extract the factor embeddings F = [f1, . . . , fn] of D from factor lookup table E;

6 Train E and R using F and the corresponding label YD (i.e., empirical check-in rate r̂ (D)) by

Equations (1)–(10);

7 end

8 until E and R converge;

9 Obtain the sparse likelihood vector and relevant factors FD
rel

for each decision D;

10 ### Causal Explanation Learning Module

11 Pre-train G using the representations F of each decision in D by Equation (11);

12 for D ∈ D do

13 Samplem counterfactual representations {Fc
1
, . . . , Fcm } with G;

14 for i=1 tom do

15 Map factors in Fci onto real-world factors to obtain counterfactual decisions ˜FDi ;

16 end

17 Predict the label for all counterfactual decisions and obtain ỸD = {ỸD
1 , . . . , Ỹ

D
m };

18 Train causal dependency θ with original and counterfactual decisions;

19 Identify causal factors based on the factors with highest θ and the relevant factors FD
rel

;

20 Generate the causal explanation E with causal factors;

21 end

with those have not been visited. We filtered a query if no queried POIs were visited. Note
that we computed the POI popularity based on the frequency of visits to POIs.

— NYC was produced based on the public Foursquare check-in dataset, which contains POIs
and user check-in records. Each check-in was considered as a positive decision instance,
and we constructed the negative by replacing POIs with those of the same categories. The
POI popularity was computed in the same way for SH dataset. We did not consider distance
factors due to unknowable decision location.

— ml1m was produced based on MovieLens 1M dataset and contains records of user rating be-
havior. We constructed user-related factors based on user’s age, gender, occupation, and the
most frequently watched movie genres. Furthermore, movie-related factors include genres
and popularity, which is computed based on the frequency of being rated and processed in
a similar way as POI popularity. Finally, each rating behavior was regarded as a positive
decision instance, and we generated negative instances by replacing movies randomly.

Note that we applied the 10-core setting to the above datasets. The data statistics are listed in
Table 3. Meanwhile, we divided the training/validation/test sets by the proportion of 7:1:2 for each
dataset.
Baselines. To evaluate the effectiveness, we compared our FCE-UTD model in terms of represen-
tation learning performance with the following baselines:
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Table 3. Statistics of SH, NYC, and Ml1m

Description SH NYC ml1m

time spanning
01/07/18~
30/09/18

03/04/12~
14/02/13

01/1996~
03/2009

# of users 28877 1019 1000
# of items 20081 5086 2568
sparsity 99.87% 97.99% 98.99%
# of positive D 72888 103584 26078
# of negative D− 437045 517920 130390
# of factors per D/D− 17 13 14

— BPR [37], a classic pairwise learning framework for implicit feedback data. Specifically, we
employed matrix factorization as the internal predictor.

— Learnsuc [45], which represented behavior records as multi-type itemsets and learned the
success of behaviors by preserving itemset structures.

— SVDGCN [34] replaced neighborhood aggregationwith a truncated SVD,which only exploits
K-largest singular values and vectors for downstream tasks.

— UltraGCN [25], a GNN-based method that skipped explicit message passing and directly
approximated the limit of infinite message passing layers to learn the node representations.

— HCCF [52], a self-supervised learning framework that jointly captured local and global col-
laborative signals with hypergraph-enhanced contrastive learning.

— DICE [64] extracted cause-specific data and train different embeddings with them to achieve
disentanglement between interest and conformity.

— UKGC [21] separated geographical and functional attributes of POIs through a urban knowl-
edge graph, and introduced counterfactual inference to alleviate the geographical bias in POI
recommendation. Note that we adapted the graph construction method to the ml1m dataset
according to the genres and other context.

— PROUD [14] can be seen as a variant of the relevant factors learning part in FCE-UTD that
learned factor embeddings without the counterfactual contrative learning paradigm.

— AR [33], a post hoc explanation model that aimed to discovering association rules of from
all users’ interactions. Here we used it to generate explanations and compared it with our
method in terms of model fidelity.

Metrics.We adopted Precision (Pre), Recall, F1, and AUC to evaluate the performance about check-
in rate prediction task, and we used model fidelity to evaluate our causal explanation framework.
Implementation. We implemented our model with PyTorch. We used the Adam optimizer with
the learning rate lr = 0.01/0.005/0.001 for SH/NYC/ml1m and set batch size B = 512 to train FCE-
UTD. The number d of dimensions was fixed to 64 for all methods and set τ = 0.5,γ = 1.0, λ =
0.1,δ = 1.2. The default number of counterfactual decisions ism = 100. We set the dropout rate in
Equation (4) as 0.2. For the VAE-based counterfactual representation generator, both the encoder
and decoder are two-layer MLP. We set the latent dimensions of encoder and decoder as 32, and
the dimension of z as 48. Besides, we employed an early stopping if the F1 on validation set did
not increase in 5/10/5 epochs for SH/NYC/ml1m.
For the AR model, we ranked based on support value by default to generate factor-level expla-

nations and referred to the settings in Reference [33] to set the optimal parameters for all datasets:
support = 0.001 for finding the frequent itemset, min threshold = 0.001 for extracting association
rules and length = 2 for filtering. Finally, we accepted the all extracted rules based on the support
value as explanations.
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Table 4. Accuracy Evaluation on Check-in Rate Prediction

Method
SH NYC ml1m

Pre Recall F1 AUC Pre Recall F1 AUC Pre Recall F1 AUC

BPR 0.4585 0.5658 0.4614 0.8009 0.7418 0.6619 0.6871 0.8341 0.7767 0.7899 0.7772 0.9043

Learnsuc 0.3488 0.3409 0.3448 0.6767 0.2330 0.5616 0.3293 0.6082 0.5378 0.5832 0.5542 0.7785

SVDGCN 0.4224 0.5374 0.4396 0.8138 0.7249 0.6911 0.7009 0.8750 0.7127 0.6707 0.6850 0.8770

UltraGCN 0.7751 0.6480 0.7011 0.8919 0.3123 0.6517 0.4173 0.7041 0.5156 0.6120 0.5502 0.8204

DICE 0.7418 0.6944 0.6994 0.8947 0.7287 0.6555 0.6730 0.8676 0.7149 0.7393 0.7165 0.8964

UKGC 0.5679 0.6401 0.5748 0.8575 0.6078 0.5043 0.4510 0.6617 0.5289 0.6943 0.5806 0.7784

HCCF 0.5597 0.6506 0.5833 0.8294 0.4933 0.6412 0.5241 0.8513 0.8045 0.8098 0.8013 0.9200

PROUD 0.7879 0.7979 0.7929 0.9647 0.7560 0.6701 0.7104 0.9220 0.9333 0.9022 0.9175 0.9822

FCE-UTD 0.8527* 0.8091* 0.8304* 0.9723* 0.7941* 0.7194* 0.7549* 0.9277* 0.9492* 0.9126* 0.9306* 0.9841*

p-value 9.81e-5 2.35e-2 1.43e-5 3.62e-2 2.15e-3 2.96e-3 5.36e-4 3.38e-4 6.40e-4 8.62e-3 5.77e-4 1.48e-2

The best result is highlighted in bold.

5.2 Experimental Results

5.2.1 Check-in Rate Prediction. We first evaluate the performance of check-in rate prediction
task for distinguishing positive and negative user decision instances, which can reflect the effec-
tiveness of FCE-UTD in preserving decision structures as well as factor embedding learning. The
results are reported in Table 4.
Based on the results, we can find that FCE-UTD significantly outperforms all baselines in all

three datasets and four metrics, especially the Precision, reflecting the superiority of our model
in determining true positive decision instances without sacrificing Recall, which demonstrates
the effectiveness and generalization of our framework. Moreover, we also witness the following
interesting findings. First, UKGC, HCCF, UltraGCN, and SVDGCN are GNN based and related to
collaborative filtering. The first twomethods achieve similar performance on SH due to the serious
data sparsity and they both propagate information over multiple graphs, enabling them to learn
sufficient information. Notably, HCCF outperforms better than UKGC in NYC and ml1m, because
UKGC is influenced by the degree of contextual richness, while HCCF effectively integrates explicit
and implicit user–item relationship to alleviates data sparsity and learns more accurate represen-
tations through a contrastive learning paradigm. UltraGCN performs better than the above two
on SH, mostly because it respectively filters uninformative user–item and item–item relationships,
which avoids introducing too much noise in sparse dataset. However, UltraGCN can only exploit
the first-order neighborhood and loses the ability to capture high-order collaborative signals, mak-
ing it difficult to take full advantage of its strengths in small but less sparse datasets (i.e., NYC
and ml1m). In addition, SVDGCN performs well on NYC and ml1m, attributed to the ability of its
truncated SVD to extract effective features. However, its performance on SH is unsatisfactory due
to the significant impact of data sparsity. Second, DICE performs well, since it learns representa-
tions whose conformity are eliminated and can better learn users’ real preferences. Third, Learnsuc
does not work well, because positive and negative decision instances are only partially different
in POI-related factors, which makes the behavior modeling difficult. After that, BPR performs bet-
ter in NYC and ml1m than SH, since the smaller data sparsity makes the task easier. Finally, the
comparison of FCE-UTD and PROUD can be seen as a part of ablation experiments, which indi-
cates the effectiveness of our counterfactual contrastive learning module in factor representation
learning. In addition, We also conduct one-sample t-tests of FCE-UTD with the strongest base-
line PROUD, and p-value < 0.05 indicates that the improvements of FCE-UTD over the strongest
baseline PROUD are statistically significant.

5.2.2 Model Fidelity. The purpose of explainable models is to generate explanations for most
decisions, so we report the model fidelity in Figure 5(a) to show what percentage of decisions can
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Fig. 5. The results of model fidelity and impact of hyper-parameterm.

be explained with our FCE-UTD framework. Specifically, we set the number of causal factors that
constitute explanation as 1 (i.e., k2 = 1). We can clearly see that FCE-UTD reaches the highest
fidelity in all datasets, which shows the superiority of counterfactual representation generator
in our causal explanation framework. We can generate many counterfactual decisions and fully
explore the influence between factors and decisions to extract more potential causal relations for
generating causal explanations. Besides, AR gets the worst performance, which exposes AR cannot
mine enough association rules with insufficient user–item interactions. If a user visited a POI or
rated a movie only once, then it will be difficult to match global association rules with this decision,
so explanations can only be generated for a few decisions.

5.3 Ablation Study

To further validate the effectiveness of the various components of FCE-UTD, we design several sim-
plified variants of FCE-UTD for the Relevant Factors Learning and Causal Explanation Learning
modules and conduct experiments on the check-in rate prediction task and model fidelity.

— FCE-UTD-SPA: This method is a variant of FCE-UTD that removes the Self-Projection Atten-

tion part. Specifically, we replace F̂ with F in Equation (4) to indicate that only the informa-
tion of the factor itself is considered, regardless of contributions of other factors.

— FCE-UTD-SLE: This method is a variant of FCE-UTD that removes the Sparse Likelihood

Estimator part. Specifically, we replace the sparsemax with softmax function and remove
the corresponding L2 regularization loss on the unnormalized l .

— FCE-UTD-RSS: This method is a variant of FCE-UTD that removes both the Self-Projection

Attention and Sparse Likelihood Estimator parts.
— FCE-UTD-DSC: This method is a variant of FCE-UTD that removes the Decision Structure

Learner in Section 4.1.3 and the corresponding objective Ld in Equation (10).
— FCE-UTD-CCL: This method is a variant of FCE-UTD that removes the Counterfactual Con-

trastive Learner in Section 4.1.4 and the corresponding objective Lc in Equation (10).
— FCE-UTD-CRG: This method is a variant of FCE-UTD that uses a fixed standard deviation

and mean to replace those learned by the encoder in VAE.

The results of the ablation study are shown in Tables 5 and 6. The best results are highlighted in
bold. For the check-in rate prediction task, we have the following findings. First, FCE-UTD-SPA and
FCE-UTD-SLE outperform FCE-UTD-RSS in all three datasets and on four metrics, indicating that
both the self-projection attention mechanism and sparse likelihood estimator can help the model
better learn the relevance of each factor in a decision and further preserve decision structures.
Specifically, the self-projection attention can effectively learn the contribution matrix between
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Table 5. The Results of Ablation Study on Check-in Rate Prediction

Method
SH NYC ml1m

Pre Recall F1 AUC Pre Recall F1 AUC Pre Recall F1 AUC

FCE-UTD-SPA 0.8467 0.7898 0.8173 0.9690 0.7780 0.6906 0.7317 0.9087 0.9166 0.8900 0.9031 0.9809

FCE-UTD-SLE 0.8241 0.7931 0.8083 0.9679 0.7882 0.6931 0.7376 0.9269 0.9066 0.8408 0.8725 0.9563

FCE-UTD-RSS 0.6522 0.7014 0.6759 0.9314 0.4607 0.7064 0.5577 0.8889 0.9079 0.7576 0.8260 0.9303

FCE-UTD-DSC 0.1422 0.9995 0.2490 0.4947 0.2089 0.4902 0.2930 0.6858 0.1799 0.7418 0.2896 0.5531

FCE-UTD-CCL 0.7879 0.7979 0.7929 0.9647 0.7560 0.6701 0.7104 0.9220 0.9333 0.9022 0.9175 0.9822

FCE-UTD 0.8527 0.8091 0.8304 0.9723 0.7941 0.7194 0.7549 0.9277 0.9492 0.9126 0.9306 0.9841

Table 6. The Results of Ablation Study on Model Fidelity

Method SH NYC ml1m

FCE-UTD-CRG 0.3792 0.1931 0.3241

FCE-UTD-SPA 0.4582 0.6872 0.7123

FCE-UTD-SLE 0.7332 0.6135 0.7130

FCE-UTD-CCL 0.8678 0.7737 0.6470

FCE-UTD 0.9514 0.9734 0.8536

factors, while sparse likelihood estimation can effectively enhance the impacts of relevant factors
and reduce the impacts of supporting factors, thus better preserving decision structures. Second,
the FCE-UTD-DSC performs extremely badly, demonstrating that the model does not work at all
without the objective in the decision structure learner. In addition, FCE-UTD performs better than
FCE-UTD-CCL, indicating that the counterfactual contrastive learner is able to learnmore accurate
and robust factor representations. Finally, FCE-UTD consistently outperforms all variants, which
suggests the significance of each component in the Relevant Factors Learning module.
For the performance of each variant in terms of model fidelity, wewitness the following findings.

Note that we omit FCE-UTD-RSS and FCE-UTD-DSC, since they are ineffective to learn the rel-
evance of each factor for further generating causal explanations. First, FCE-UTD-CRG performs
worst among all variants, owing to the fixed standard deviation and mean cannot generate spe-
cific couterfactual representations for different user decisions, resulting in the failure of causality
mining. Second, both FCE-UTD-SPA and FCE-UTD-SLE do not work well, which verifies the im-
portance of considering mutual contributions between factors when identifying relevant factors,
and the necessity of using the sparsemax function to emphasize the influence of relevant factors,
respectively. Moreover, the comparison of FCE-UTD and FCE-UTD-CCL demonstrates that the
counterfactual transformation in counterfactual contrastive learner can help to learn more genera-
tive factor representations. Finally, FCE-UTD performs best, illustrating that each part of FCE-UTD
is crucial for the generation of explanations.

5.4 Impacts of Hyper-Parameters

Here, we first evaluate the impacts of hyper-parameters γ and τ in Section 4.1.4 with F1 and AUC,
which consider both Precision and Recall metrics and provide a more comprehensive evaluation.
Specifically, γ controls the contribution of counterfactual contrastive objective, Figure 6(a) and (b)
show the results by varying γ . The best result is achieved with γ = 0.3 for SH, γ = 0.4/0.5 for
NYC and γ = 0.2 ∼ 0.5 for ml1m. The too-small γ will limit the effectiveness of counterfactual
contrastive learning, while too-largeγ will make the ability to preserve decision structures reduced
and introduce more noise.
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Fig. 6. Impact of hyper-parameter γ , τ in terms of F1 and AUC.

The results of replacement ratio τ for constructing counterfactual samples in counterfactual con-
trastive learner are reported in Figure 6(c) and (d). The best results are reachedwith τ = 0.3/0.5/0.5
for SH, NYC, and ml1m, respectively. The effect of counterfactual contrastive objective will be af-
fected when τ is small, while the large τ will introduce toomuch noise that comes from the random
replacement of factors, and influence the accuracy of representation learning.
In addition, we also evaluate the number of counterfactual decisionsm with the model fidelity

as the metric. As shown in Figure 5(b), whenm increases, model fidelity increases as well. Whenm
is small, the random noise generated by the counterfactual representation generator increase the
probability that the model will extract factors other than the original ones as explanations, thus
reducing model fidelity. But when m becomes larger, rich counterfactual decisions can help the
model better explore the causality between each factor and the decision.Meanwhile, asm increases,
counterfactual decisions containing the original factors also increases, which can statistically offset
such noise.

5.5 Application–Recommendation Task

To demonstrate the mined factor-level causal explanations can assist downstream tasks, we con-
duct additional experiments of recommendation task on all three original and corresponding OOD
datasets. To construct OOD datasets, we partition all decisions based on the categories of visited
POIs for SH and NYC and based on user occupations for ml1m. Moreover, we separate training and
test sets according to the partition, aiming to ensure a different distribution between training and
test sets. Note that we conduct the following experiments with the optimal parameters in previous
experiments. Specifically, we first mine causal factors for each decision in test set. After that, for
each user and item pair (ui ,vj ) in the test set that needs to be scored and ranked, we extract iden-
tifier factors of the user and the item and then combine these factors with mined causal factors by
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Table 7. Recommendation Performance on Original and OOD SH Datasets

Method
SH OOD SH

Rec@1 Rec@5 N@1 N@5 Rec@1 Rec@5 N@1 N@5

BPR 0.0019 0.0081 0.0035 0.0056 0.0013 0.0020 0.0024 0.0019

WRMF 0.0026 0.0075 0.0055 0.0060 0.0015 0.0042 0.0038 0.0039

NGCF 0.0025 0.0042 0.0041 0.0060 0.0013 0.0016 0.0029 0.0037

UltraGCN 0.0024 0.0091 0.0050 0.0068 0.0008 0.0026 0.0048 0.0034

SVDGCN 0.0024 0.0048 0.0041 0.0043 0.0014 0.0021 0.0022 0.0020

FCE-UTD-E 0.0029 0.0045 0.0044 0.0041 0.0078 0.0078 0.0124 0.0087

FCE-UTD 0.0111 0.0117 0.0189 0.0131 0.0093 0.0094 0.0157 0.0109

Rec@k means Recall@k and N@k means NDCG@k.

The best result is highlighted in bold.

Table 8. Recommendation Performance on Original and OOD NYC Datasets

Method
NYC OOD NYC

Rec@1 Rec@5 N@1 N@5 Rec@1 Rec@5 N@1 N@5

BPR 0.0019 0.0073 0.0130 0.0098 0.0009 0.0053 0.0060 0.0080

WRMF 0.0046 0.0180 0.0307 0.0272 0.0020 0.0063 0.0100 0.0092

NGCF 0.0040 0.0124 0.0287 0.0559 0.0023 0.0066 0.0100 0.0212

UltraGCN 0.0045 0.0155 0.0337 0.0283 0.0015 0.0050 0.0130 0.0092

SVDGCN 0.0078 0.0170 0.0559 0.0351 0.0024 0.0053 0.0128 0.0098

FCE-UTD-E 0.0007 0.0048 0.0040 0.0068 0.0004 0.0018 0.0040 0.0034

FCE-UTD 0.0169 0.0448 0.0990 0.0665 0.0136 0.0269 0.0702 0.0406

a simple summation to form user and item representations. Note that we only use causal factors
that are user related or item related. Finally, we calculate the score for (ui ,vj ) pair by taking the
inner product of their representations,

xi j = ui ·vj ,ui = uID +

Fui∑
f ,vj = vID +

Fvj∑
f ,

(15)

where Fui and Fvj are sets of user-related and item-related causal factors. Finally, we adopt the
Recall@k and NDCG@k metrics to test the recommendation performance, and results on original
and OOD datasets are shown in Tables 7–9, respectively. Note that we generate only one causal
factor for each decision by default, and the FCE-UTD-E is a variant that replaces causal factors
with relevant factors. Additionally, the WRMF [15] and NGCF [46] in results are two classical
recommendation models. Specifically, WRMF is a pointwise latent factor model that distinguishes
user observed and unobserved check-in data with different confidence values. NGCF is a graph-
based framework for collaborative filtering that adopts three GNN layers on the user–item graph
to refine user and item representations via at most three-hop neighbors’ information.
As shown in Tables 7–9, for small-scale original datasets (i.e., NYC and ml1m), SVDGCN can

achieve better results, which shows that the truncated SVD can extract effective features and
reduce the noise from vectors with small singular values. Meanwhile, NGCF performs better
in NDCG@5. This is mainly because NGCF is capable of effectively modeling higher-order
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Table 9. Recommendation Performance on Original and OOD ml1m Datasets

Method
ml1m OOD ml1m

Rec@1 Rec@5 N@1 N@5 Rec@1 Rec@5 N@1 N@5

BPR 0.0271 0.0892 0.1296 0.1051 0.0317 0.0958 0.1498 0.1154

WRMF 0.0383 0.1291 0.1822 0.1511 0.0374 0.1200 0.1761 0.1428

NGCF 0.0345 0.1121 0.1427 0.2524 0.0405 0.1223 0.1508 0.2147

UltraGCN 0.0451 0.1398 0.2176 0.1690 0.0412 0.1246 0.1387 0.1531

SVDGCN 0.0465 0.1544 0.2150 0.1838 0.0460 0.1340 0.1566 0.1594

FCE-UTD-E 0.0235 0.0458 0.1143 0.0647 0.0312 0.0447 0.0881 0.0656

FCE-UTD 0.1021 0.1859 0.4858 0.2693 0.1115 0.1823 0.3727 0.2958

connectivity in small user–item interaction graph by stacking multiple embedding propagation
layers, leading to a good ranking ability over a longer range. Additionally, in large-scale dataset
SH, UltraGCN has achieved good results due to its simplified model structure that can filter out
user–item relationships with limited information. In OOD SH, WRMF proves to be more effective
than other more complex models in the case of imbalanced data distribution, possibly because its
simple structure helps avoid overfitting. For OOD NYC and OOD ml1m, NGCF gets better results,
especially on NDCG@5, which is mainly attributed to the strong ranking ability of the learned
higher-order connectivity. Finally, our method achieves the best performance on both original and
OOD datasets, which demonstrates the superiority of the mined causal factors. Compared with
using representations of relevant factors (i.e., FCE-UTD-E), our method utilizes causal factors,
which can effectively avoid misleading some spurious relationships and enable user and item
representations to contain some causal orientation. Moreover, experiments on ml1m and OOD
ml1m further validate the generalization of our method.

5.6 Average Causal Effect

We evaluate the quality of generated causal explanations with Average Causal Effect (ACE)

[27, 57] in the absence of the ground-truth explanations. The ACE can be used tomeasure the effect
from a particular operation, and we first give the definition of Average Causal Effect according to
Reference [27].

Definition 5 (Average Causal Effect). The Average Causal Effect of a binary random variable x
(treatment) on another random variable y (outcome) is defined as

ACE = E[y |do(x = 1)] − E[y |do(x = 0)], (16)

where do(·) denotes an external intervention that forces a variable to take a specific value. In
our case, we use ACE to evaluate the causality inside our check-in rate prediction model. Specif-
ically, to compute ACE, we first keep the number of causal factors that constitute explanation as
1(i.e., k2 = 1), which means that each decision explanation E consists of one factor. Then, given
the causal explanation of decision D, i.e., E ⇒ D, andm corresponding counterfactual decisions

{(F̃Di , Ỹ
D
i )}mi=1 of D, if E belongs to F̃Di , then we regard it as setting x to 1 (i.e., do(x = 1)), and 0

otherwise. Recall that F̃Di is obtained by counterfactual representation generator in Section 4.2.1,
which cannot be observed in the original decision. Moreover, we also define y as a binary random

variable, wherey = 1 if the ỸD
i = Y

D = 1 occurs, and 0 otherwise. Finally, we can compute average
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Table 10. The Results of Average Causal Effect

Method SH NYC ml1m

FCE-UTD-CRG 0.2803 0.3312 0.2367

FCE-UTD 0.4583 0.4770 0.3878

The best result is highlighted in bold.

Fig. 7. Cosine similarity of mapping and the label distribution of counterfactual decisions.

ACE on all generated explanations,

E[y |do(x = 1)] = P(y = 1|do(x = 1)) =
#Pairs((f ∈ F̃Di ) ∧ (ỸD

i = 1))

#Pairs(f ∈ F̃Di )
, (17)

E[y |do(x = 0)] = P(y = 1|do(x = 0)) =
#Pairs((f � F̃Di ) ∧ (ỸD

i = 1))

#Pairs(f � F̃Di )
, (18)

where f is the only causal factor in E. To verify the effectiveness of our counterfactual representa-
tion generator for generating accurate causal explanations, we compare FCE-UTDwith FCE-UTD-
CRG, which uses fixed standard deviation and mean. The results in three datasets are shown in
Table 10. Since ACE values only apply to models that are relevant for modeling causality, we do
not report ACE values for the (AR).
We can find that FCE-UTD achieves the best results on all datasets, which indicates our coun-

terfactual representation generator can generate different counterfactual factors for each user de-
cision and construct counterfactual representations that conform to the inherent causal logic of
original users’ decisions. This helps the causal dependency learner to mine accurate causal expla-
nations. Moreover, FCE-UTD-CRG performs worse, mainly because it uses fixed standard devia-
tion and mean, which fails to yield effective decision-specific counterfactual representations and
hinders the learning process of causal dependency learner.

5.7 Case Studies

5.7.1 Quality of Counterfactual Decisions. As stated in Section 4.2.1, to generate causal expla-
nations for user travel decisions, we should first ensure the quality and generation ability of the
decisions generated by the counterfactual representation generator. Since the generated counter-
factual representations need to bemapped to real-world factors, one of the important premise is the
accuracy of mapping (i.e., the cosine similarity between the counterfactual and real-world factors).
Note that a high similarity means the generated counterfactual representation is close to the real

space, while a low similarity means it is far from the real space. We show the mapping of generated
counterfactual representations in Figure 7(a). For each counterfactual decision, we compute the
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average cosine similarity for factors in the mapping process. As shown in Figure 7(a), the decisions
generated by counterfactual representation generator have good mapping performance across all
datasets, which indirectly demonstrates the high quality of counterfactual representations. In SH
and NYC datasets, the matching similarity is concentrated between 0.945 and 0.985, while the
similarity in ml1m is concentrated between 0.925 and 0.980. We can notice that there are some
decisions with low mapping similarity in NYC and ml1m. This is because the number of factors
that comprise decisions in the two datasets is less than those of SH, thus increasing the variance.
Furthermore, since we need to generate different decisions from the original to explore the in-

fluence of factors on decisions, the generation ability of counterfactual decisions is also important.
As described in Section 4.2.2, to mine the potential causality of each factor in a decision, we com-
pute labels of the counterfactual decisions by means of the trained check-in rate prediction model
R(·). To verify the intermediate process of counterfactual decision generation, we present the label
distribution of counterfactual decisions, the result is shown in Figure 7(b). It can be seen that the dis-
tribution of positive and negative labels is relatively balanced, indicating that representations gen-
erated through the counterfactual representation generator will not deviate significantly from the
original decision and introduce excessive noise, which facilitates the generation of explanations.
In addition, the distribution of original decisions and counterfactual decisions (i.e., positive and

negative) based on Principal Component Analysis is shown in Figure 8. We can see clearly that
counterfactual decisions are different from the original, but the counterfactual positive decisions
and the negative are close to each other, indicating that they belong to the same distribution and
have only a small difference, which reflects that our generated decisions have better generation
ability along with better generation quality.

5.7.2 Explanation For User Travel Decisions. In this part, we further illustrate the ability of FCE-
UTD to generate causal explanations and how to distinguish spurious explanations and true causal
relations with a case study in Figure 9. We first randomly select three different travel decisions
and compute the relevance and causal dependencies of factors in each decision. Then we present
the differences between causal dependencies and relevance using heat maps and highlight factors
with large differences with blue dashed boxes, aiming to explain decisions and distinguish spurious
explanations. In addition, we further incorporate users’ query and check-in histories to verify and
analyze the generated explanations. Concretely, we list the brands of POIs in users’ query and
check-in histories that belong to the same categories as the users’ decisions. Then we present the
time distribution histograms of query or check-in behavior to illustrate users’ daily preferences and
behavioral patterns. Notably, the red font numbers in the heat map indicate causal dependencies,
and the black indicate relevance. Besides, to explore the deeper reasons for decisions, we omit
identifiers of user and POI. Specifically, for the three user decisions, we have the following findings:

— D46345 is a check-in decision of User8928 to go to Yonghui Market, which has a high relevance in

Brand(0.2299) but a high causal dependency in Query Time Session(0.2198). It demonstrates
that the user did not make this decision for a specific brand but probably because he had a
need to go to the market to buy necessities. To further verify and analyze this explanation,
we checked User8928’s query and check-in histories. We found that the user both queried
and visited various markets, and he usually queried these POIs at night after a day’s work. It
is consistent with the explanation drawn from the difference between relevance and causal
dependencies. Therefore, if there is a need to recommend POIs for this user, then the recom-
mendation system should recommendmarketsmore often in the evening, instead of focusing
on specific brands.

— D3000 is a check-in decision of User27627 to go to Starbucks, which has a strong relevance

and a relatively high causal dependency in Check-in Time(0.4008, 0.212), and a high causal
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Fig. 8. The visual distribution of original and counterfactual (positive and negative) decisions. Green dots

indicate original decisions, blue dots indicate positive counterfactual decisions (i.e., label = 1), and red dots

indicate negative counterfactual decisions (i.e., label = 0).

dependency in Category(0.2599). We can combine the Category and Check-in Time factors
to infer that the real reason for the decision is not only the corresponding check-in time but
also the user’s preference to drink coffee. To further verify and analyze this explanation, we
checked User27627’s query and check-in histories. We discovered that the user both queried
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Fig. 9. A case study of the difference between factor relevance and causal dependencies for three decisions

by different users.

and visited many different cafes, and he frequently visited POIs with food categories, indicat-
ing that this user likes coffee and often explores different cafes or restaurants. Furthermore,
the time distribution of the user’s check-ins shows that the user has visited cafes several
times in the morning, noon, and afternoon, demonstrating that the user is not limited to
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visit cafes at a specific time. Thus, recommendation systems should tend to recommend dif-
ferent kinds of cafes for the user during the daytime.

— D2000 is a check-in decision of User8245 to go to Haiyou Express Hotel, which has a high rel-

evance in Check-in Time(0.4280), but exhibits high causal dependencies in Category(0.3469)
and Query Time Session(0.2245). This suggests that the real reason for the decision is the
user’s demand for accommodation and he actually cared more about the convenience at-
tribute of the express hotel rather than when he visited. To further verify and analyze this
explanation, we examined the user’s query and check-in histories and discovered that the
user queried and checked in many different hotels, mainly express hotels. Moreover, the user
often queried express hotels in the morning, and often visited at noon and afternoon, sug-
gesting that he may often travel here on business with a need for accommodation, which is
consistent with the above conclusion. It motivates recommendation systems to recommend
express hotels to the user in the morning.

6 CONCLUSION

In this article, we proposed FCE-UTD, a novel factor-level causal explanation generation frame-
work based on counterfactual data augmentation for user travel decisions. To be specific, we first
assume that a user decision is composed of a set of several different factors. Then, we learn the
representation of factors and detect the relevant factors by preserving the user decision structure
with a joint counterfactual contrastive learning paradigm. Furthermore, we identify causal factors
from relevant factors by constructing counterfactual decisions with counterfactual representation
generator, which can not only augment the dataset and mitigate the sparsity but also contribute to
clarifying the causal factors from other false causal factors that may cause spurious explanations.
In addition, a causal dependency learner is proposed to identify causal factors for each decision
by learning causal dependency scores, which further leads to factor-level causal explanations. Ex-
tensive experiments conducted on three real-world datasets shows the effectiveness of FCE-UTD
in terms of check-in rate, fidelity, and downstream tasks under different behavior scenarios. Case
studies also validated the ability of FCE-UTD to generate causal explanations and to distinguish
spurious explanations and true causality for user travel decisions.
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