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Abstract— Recent years have witnessed the great success of
the applications of graph convolutional networks (GCNs) in
various scenarios. However, due to the challenging over-smoothing
and over-squashing problems, the ability of GCNs to model
information from long-distance nodes has been largely limited.
One solution is to aggregate features from different hops of
neighborhoods with a linear combination of them followed by
a shallow feature transformation. However, we demonstrate that
those methods can only achieve a tradeoff between tackling those
two problems. To this end, in this article, we design a simple
yet effective graph convolution (GC), named maximization-based
GC (MGC). Instead of using the linear combination, MGC
applies an elementwise maximizing operation for exploiting all
possible powers of the normalized adjacent matrix to construct
a GC operation. As evidenced by theoretical and empirical
analysis, MGC can effectively handle the above two problems.
Besides, an efficient approximated model with a linear complexity
is developed to extend MGC for large-scale graph learning.
To demonstrate the effectiveness, scalability, and efficiency of
our models, extensive experiments have been conducted on
various benchmark datasets. In particular, our models achieve
competitive performance with lower complexity, even on large
graphs with more than 100M nodes. Our code is available at
https://github.com/SmilesDZgk/MGC.

Index Terms— Graph convolutional network (GCN), node
classification, over-smoothing, over-squashing.

I. INTRODUCTION

AS AN advanced neural approach for modeling com-
plex graph-structured data, graph convolutional network

(GCN) [29], [66] and its variants have obtained great success
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in various application scenarios, including social media [2],
[21], traffic prediction [5], [33], biology [32], [70], recom-
mender systems [16], [47], [48], [65], language modeling [12],
[54], [79], computer vision [51], [63], knowledge discovery
and diagnosis [6], [45], [71], [72], and even talent manage-
ment [26], [46], [56], [76], [77], [78]. To learn the graph rep-
resentations, GCNs apply the fixed linear feature propagation
between each node and its neighbors with graph convolution
(GC) operation (i.e., the normalized adjacent matrix) followed
by a trainable nonlinear feature transformation.

While considerable efforts have been made to improve
the performance of GCNs, there are still some long-standing
challenges that cannot be neglected. The most well-known
problem is named over-smoothing [36], which means the
node representations will become indistinguishable and even
converge to the same value as the number of layers increases.
As a result, most of the recent GCN models tend to use
fairly shallow settings (e.g., vanilla GCN [29] achieves their
best performance with two layers), which limits their ability
to reach the high-order neighbors. One solution for that is
to widen the receptive field of feature propagation while
limiting the depth of transformation networks to reduce the
negative effect caused by deep neural networks [83]. Along
this line, a series of works focus on the design of the GC
operation and specify it as the linear combination of powers
of the normalized adjacent matrix with different weighting
coefficients, such as SGC [64], S2GC [83], and approximate
PPNP (APPNP) [30]. Furthermore, graph diffusion convolu-
tion (GDC) [31] provides a unified framework to design those
GC operations by generalizing the graph diffusion process. All
of them can deepen the layers of GCNs without performance
degradation to some extent.

However, we will demonstrate that all GDC-based models
have to abandon the long-distance information to some extent
for relieving over-smoothing. In other words, these models
can only achieve a tradeoff between tackling over-smoothing
and another critical problem in GCNs, i.e., over-squashing [1].
It suggests that GCNs fail to handle the long-distance depen-
dencies between distant nodes even though they are included
in the receptive field. The rationale behind is that GCNs
absorb incoming edges equally in each layer [1], where
the contribution of each distant neighbor would be mostly
submerged among the exponentially growing receptive field
as the number of layers increases. Most of the previous works
to address over-squashing are based on the adjustment of
graph structure by adding extra nodes or virtual edges [1],
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Fig. 1. Overview of the proposed MGC pipeline, where the feature propagation and transformation are decoupled into the preprocessing stage and training
stage, respectively.

[14], [52], [58]. However, the correctness and rationality of
all involved new nodes or edges cannot be guaranteed, which
may include unnecessary computation and noise information.

To this end, in this article, instead of using the linear com-
bination like that in GDC-based models, we propose a simple
yet effective GC, i.e., maximization-based GC (MGC). Specif-
ically, we design the whole pipeline as in Fig. 1. Instead of
conducting feature propagation and transformation alternately,
we propose to decouple them into two separate parts. Our
MGC operation is involved in the preprocessing stage to prop-
agate and fuse features among different nodes. Subsequently,
during the training stage, a simple multilayer perceptron
(MLP) layer is trained using a combination of both the original
and processed node features as input, with the node label as the
supervision. In particular, as shown in the below box, MGC
applies an elementwise maximizing operation for exploiting all
possible powers of the normalized adjacent matrix to construct
the GC operation. We demonstrate that our MGC operation
can alleviate over-squashing better than any GDC operation
theoretically and can also avoid over-smoothing with empirical
evidence. In addition, to reduce the high complexity for
large scalable graph learning, we develop the approximated
approach, i.e., approximated MGC (AMGC), with a complex-
ity that is linear in the number of edges. To demonstrate
the effectiveness, scalability, and efficiency, extensive empir-
ical analysis has been conducted on 14 node classification
benchmark datasets, including large-scale datasets, such as
Ogbn-Papers100M and MAG240M [20]. The results demon-
strate that our models achieve competitive performance in
capturing both the neighbor and long-distance dependency
with lower complexity.

The major contributions of this article are listed as
follows.

1) We demonstrate that all GDC-based models, which
aggregate features from different hops of neighborhoods
with a linear combination of them, can only achieve

a tradeoff between tackling over-smoothing and over-
squashing problems.

2) We propose a simple yet effective GC based on
maximization operation, i.e., MGC, to handle both
over-smoothing and over-squashing problems. Also,
an efficient approximated approach to MGC with a linear
complexity has been designed.

3) Extensive experiments on 14 node classification bench-
mark datasets have been conducted to demonstrate the
effectiveness, scalability, and efficiency of our models.

The remainder of this article is structured as follows.
In Section II, we briefly introduce the necessary background
knowledge about the various GCNs. In Section III, we will
point out the tradeoff of all GDC-based models on tack-
ling over-smoothing and over-squashing problems. Technical
details of our proposed model, i.e., MGC, will be specified in
Section IV with effectiveness and efficiency analysis. In par-
ticular, an approximated approach, i.e., AMGC, will also be
designed. Then, we evaluate the effectiveness, scalability, and
efficiency of our models on 13 public benchmark datasets
in Section V, with some further discussions on experimental
results. In Section VI, we conclude this article.

II. PRELIMINARIES

Here, we introduce the necessary notations and review the
previous related GCN variants.

Formally, given an undirected graph G = (V, E) (G is
assumed to be connected for convenience), where V represents
the vertex set consisting of n nodes, i.e., {v1, . . . , vn}, and
E represents the edge set with size of m. We denote the
A ∈ Rn×n as the adjacent matrix and D = diag(d1, . . . , dn)

as the diagonal degree matrix, respectively. Here, di is equal
to the row sum of the adjacency matrix, i.e., di =

∑
j Ai j .

Then, the adjacent matrix with self-loops can be denoted
by Ã = A + In with the corresponding diagonal degree
matrix D̃ = D + In , where In is an identity matrix. Â is
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the normalized adjacency matrix with added self-loops, i.e.,
D̃−1/2 ÃD̃−1/2. Meanwhile, each node is represented by a
b-dimensional vector xi ∈ Rb, while the integrated feature
matrix is denoted by X = [x1, . . . , xn]

T
∈ Rn×b. Besides,

each node is assigned by one of c classes. The label vector yi

of each node is one-hot vectors, i.e., yi ∈ {0, 1}
c. The node

classification task aims to predict the unlabeled node set based
on the labeled node set.

A. Vanila GCN [29]

Different from MLPs, which only model the feature trans-
formation independently on each instance, a K -layer GCN
also propagates the representation of each node among its
neighbors at each layer. This procedure can be defined as
follows:

H (k+1)
= σ

(
ÂH (k)W (k)

)
(1)

where H (k+1) and H (k) are the smoothed feature matrix at
layer k + 1 and k, respectively. H (0) is set as the input feature
matrix, X . W (k) is a layer-specific trainable weight matrix, and
σ(·) is a nonlinear activation function, such as ReLU.

B. SGC [64]

A GCN layer averages the hidden representations among
one-hop neighbors, which implies that K -layer GCN can
capture feature information from all nodes in the K -hop
neighbors. By hypothesizing that the majority of the benefit
of GCN models arises from the local averaging at each GCN
layer not the nonlinearity between layers, SGC simplifies the
K -layer GCN by applying the K th power of the normalization
adjacent matrix Â to model the feature propagation and feeds
output feature to a single linear model before the prediction
function

Ŷ = Softmax
(

ÂK X W
)
. (2)

Following the main idea to simplifying GCNs into linear
models, S2GC [83] further replaces Âk with 1/K

∑K
k=1 Âk to

alleviate the over-smoothing problem while maintaining the
high scalability and efficiency.

C. APPNP [30]

Inspired by the personalized PageRank [43] algorithm,
Klicpera et al. [30] proposed to derive a PPR-based convo-
lution, PPNP, by decoupling the feature transformation and
propagation

H = α
(
In − (1 − α) Â

)−1
H (0) (3)

where α ∈ (0, 1) represents the teleport probability in PPR
to balance the needs of preserving locality and leveraging
the information from a distant neighbor and H (0)

= f (X)

is the output of a two-layer fully connected neural network
on the feature matrix X . To avoid the complex calculation for
the inverse of matrix Â, APPNP is proposed with a truncated
power iteration on the K -hop neighbors

H (k+1)
= (1 − α) ÂH (k)

+ αH (0). (4)

D. Graph Diffusion Convolution [31]

A generalized graph diffusion is a linear combination of all
possible powers of normalized adjacent matrix { Âk

}
∞

k=1, called
GDC operation

S =

∞∑
k=1

θk Âk (5)

where the weighting coefficients θk are constrained by that∑
∞

k=1 θk = 1 to ensure the above equation converges. The S
itself or its normalization Ŝ = D−1/2

s SD−1/2
s with the diagonal

degree matrix Ds is used as the convolution operation to model
the feature propagation before the feature transformation, i.e.,
ŜX . Note that θk can be a trainable parameter or fixed with
prior knowledge.

Indeed, by assuming the nonlinearity in GCNs is not criti-
cal [64], many works can be regarded as the expansion of GDC
with different choices of θk , where we call them as GDC-based
models.

1) Vanila GCN is with θk = 1 if k = 1, else 0.
2) SGC is with θk = 1 if k = K , else 0.
3) S2GC is with θk = 1/K if 0 < k ≤ K , else 0.
4) APPNP is with θk = α(1 − α)k , if 0 ≤ k ≤ K , else 0.

III. TRADEOFF BETWEEN TACKLING OVER-SMOOTHING
AND OVER-SQUASHING

Although GCNs have been applied successively to deal
with broad classes of systems of relations and interactions,
there are still some long-standing challenges that cannot be
neglected [1], [22], [67]. Here, we first discuss the most pop-
ular two problems, i.e., over-smoothing and over-squashing,
which essentially limit GCNs for modeling information from
long-distance nodes. Then, we point out that the GDC-based
models can only achieve a tradeoff between tackling those two
problems.

A. Over-Smoothing

Over-smoothing is the most well-known problem in GCNs,
which suggests that the node representations are inclined to
be indistinguishable as the number of feature propagation
steps increases. Li et al. [36] explain the hidden rationale is
that most eigenvalues of the normalized adjacent matrix Âk

will converge to 0 as k increases to infinity. Taking SGC as
an example, the output representation X (∞) after an infinite
number of feature propagation will become

X (∞)
= Â∞ X = U3̂∞U T X (6)

where 3̂ = diag{λ1, . . . ,λn} is a diagonal matrix of the eigen-
values of Â and U ∈ Rn×n is a unitary matrix that consists
of the eigenvectors. Noting that all eigenvalues λ1, . . . ,λn

fall to (−1, 1] and only the max one λ1 = 1. Therefore,
we have 3̂∞

= diag{1, . . . , 0} and Â∞
= U T

1 U1 with U1, j =

((d j + 1)1/2/(2m + n)1/2). In other words, each row vector
of Â∞ has the same direction, and each element Â∞

i j only
relates to the node degrees of target nodes and source nodes
without the full graph structure information, which results
indistinguishable feature vectors in X (∞).
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Fig. 2. Left part shows the illustrative curve of Âk
i j between two nodes vi

and v j as k increases in the Zachary Karate dataset. In particular, the source
node vi is randomly selected and fixed, while the target node v j varies across
all nodes. The lines that Âk

i j has not achieved the maximum before k = 45 are
highlighted by orange color. The right part shows the proportion of elements
Âk

i j in the matrix Âk that reach the maximum on different k values, where
1 ≤ k < 45 and zero elements have been omitted.

B. Over-Squashing

Over-squashing is another critical problem in GCNs and
attracting more attention recently [1], [58], which suggests that
the node representations fail to handle long-distance depen-
dency between distant nodes. GCNs need to have at least K
layers to receive information from the nodes beyond a distance
of K . However, as the number of layers increases, GCNs
must compress information from the exponentially growing
receptive field into fixed-length node vectors [1]. Because
GCNs absorb incoming edges equally in each layer, the contri-
bution of each distant node would be mostly ignored compared
with that of neighbors. Most of the previous works to tackle
over-squashing are based on the adjustment of graph structure
by adding “supersource” nodes [52] or virtual edges [14],
[58] to connect nodes with distant distance and even connect
all nodes to capture global information [1]. Here, we aim to
avoid over-squashing without modifying the graph structure,
to decrease unnecessary computation and noise information.

C. Tradeoff Dilemma

Following [58] and [68], we assess the over-squashing effect
between node vi and its distant neighbor v j in GDC-based
models by measuring how much a change in the input feature
of v j affects the representation of vi with the Jacobian, i.e.,

∂(SX)i

∂ X j
= Si j =

∞∑
k=1

θk
(

Âk)
i j . (7)

Intuitively, to strengthen the connection between nodes vi

and v j , we need to assign more weight to ( Âk)i j with
larger value. However, if the distance (shortest path distance)
between them is d, we have ( Âk)i j = 0 ∀k < d . Therefore,
we must enlarge several values of θk , where k ≥ d at least.
In addition, the strongest connection between two distant
nodes with the largest ( Âk)i j rarely occurs around k = d. Take
the small graph, Zachary Karate dataset [73] with 34 nodes,
as an example. We show the curve of Âk

i j between one
node vi and each of other nodes j ∈ {1, 2, . . . , 34} as k
increases in Fig. 2(a), where each curve corresponds to one
node pair (vi , v j ). We can find that the value ( Âk)i j of several
node pairs is larger with larger k (colored by orange) and
even monotonically increases as k increases, especially for
long-distance node pairs (vi , v j ) with ( Âk)i j = 0 for k = 1, 2,

or 3. In addition, we further show the proportion of elements
in Â that reach the largest on different k values, where
1 ≤ k < 45. We find that a considerable proportion of Âk

i j
reaches the largest on the last power. As a result, to alleviate
the over-squashing and enhance the relation between long-
distance nodes, we must assign more weight θk with large k.

Following [80], we assess the degree of over-smoothing by
measuring the distance between GDC operation S in (5) and
over-smoothing stationarity Â∞ with Frobenius norm. Then,
we can derive

∥∥S − Â∞
∥∥2

F =

∥∥∥∥∥U

(
∞∑

k=0

θk3̂
k
− 3̂∞

)
U T

∥∥∥∥∥
2

F

≤ ∥U∥
2
F

∥∥∥∥∥
∞∑

k=0

(
θk3̂

k
− 3̂∞

)∥∥∥∥∥
2

F

||U T
||

2
F

= n2
n∑

i=2

(
∞∑

k=0

θkλ
k
i

)2

≤ n3
n∑

i=2

∞∑
k=0

θ2
k λ2k

i (8)

where the first line is based on the decomposition Â = U3̂U T

and the second line is based on the property of the Frobenius
norm ||·||F . Noting that |λi | < 1, ∀i > 1, and λk

i approximates
exponentially to 0, we need to assign more weight θk with
smaller k to avoid the left term to be too small, which causes
the over-smoothing problem.

In summary, based on the above analysis, we observe the
opposite requirements to assign the weighting coefficients
θk on handling the over-squashing and over-smoothing
problems in GDC-based models. Therefore, we argue that
any GDC-based models with the GC operation defined in (5)
can only achieve a tradeoff of tackling with over-smoothing
and over-squashing problems at most.

IV. MAXIMIZATION-BASED GC

Here, we first introduce the proposed GC operation, i.e.,
MGC, with a detailed discussion about its effect on handling
over-squashing and over-smoothing. Then, the design of the
whole MGC pipeline is described. Finally, the efficiency anal-
ysis is conducted, where an efficient approximated approach
is developed to reduce complexity.

A. MGC Operation

Similar to GDC operations, our goal is to find a suitable
feature propagation matrix M ∈ Rn×n as the GC operation
with consideration on powers of the normalized adjacent
matrix Â. Inspired by that in (7), we assume the Jacobian
∂(M X)i/∂ X j = Mi j as the measure of the influence on the
output feature of node vi from the input feature of node v j .
We have an intuitive idea that any other nodes, including
both the short-distance and long-distance neighbors, should
all affect the nodes vi at most. Therefore, instead of the linear
combination in the GDC-based models, we propose to use the
maximization operation among the set { Âk

}
K
k=1 to construct

the GC operation M , called MGC operation, that is,

M = maxK
k=1

{
Âk} (9)
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where max{·} is an elementwise maximization operation on
the matrix set. We can consider all possible feature propaga-
tion by increasing K to ∞ to capture comprehensive graph
information. Actually, MGC operation can be regarded as one
special case of the generalized GDC operation, i.e.,

Mi j =

K∑
k=1

θk,i j
(

Âk)
i j

θk,i j =

{
1, k = argmaxK

s=1

{(
Âs)

i j

}
0, others.

(10)

Note that we have also constrained the weighting coefficients
by θk,i j that

∑K
k=0 θk,i j = 1, ∀i, j to ensure convergence and

control the scale.

B. Effectiveness Analysis

Here, we turn to analyze the effectiveness of MGC oper-
ation on alleviating over-squashing and over-smoothing with
theoretical or empirical evidence.

1) Alleviating Over-Squashing: By comparing GDC oper-
ation in (5) and MGC operation in (9), we can derive the
following corollary.

Corollary 1: Given any GDC operation S defined in (5)
with consideration of K ′-hop neighbors (i.e., θk = 0,

∀k > K ′), we can specify an MGC operation with α = θ0 and
any K ≥ K ′, in which

∂(SX)i

∂ X j
= Si j ≤ Mi j =

∂(M X)i

∂ X j
∀i, j. (11)

This corollary suggests that the effect of the interaction
between any pair nodes, including the distant nodes, in the
MGC operation can be larger than that in any GDC operations,
which indicates that MGC operation prefers to alleviate the
over-squashing problem better.

2) Avoiding Over-Smoothing: As for measuring the degree
of over-smoothing problem in MGC operation, it may be not
suitable to use the distance between M and Â∞, such as (8),
because the maximization operation has changed both the
eigenvectors and eigenvalues of Â, which means there is no
direct correspondence between the eigenvalues of M and Âk .
Actually, the rank of the GC operation is highly related to the
degree of the over-smoothing problem. In extreme cases, when
the rank of the GC operation is equal to 1, the over-smoothing
will occur where the output representations of all nodes are lin-
early correlated with each other. In the opposite sense, a larger
rank number indicates a lower degree of over-smoothing,
which the number of nondegenerated eigenvalues can measure.
Therefore, we turn to depict the spectrum (the distribution
of eigenvalues) and count the number of nondegenerated
eigenvalues (without vanishing to 0) of the MGC operation
to analyze the ability to avoid over-smoothing.

To be specific, taking Cora [53] and Cornell [44] dataset as
examples, Fig. 3(a) and (b) shows the spectrum of MGC oper-
ation M and powers of normalized adjacent matrix ÂK with
different K values. We can observe that the eigenvalues degen-
eration would not occur in MGC operation even with quite
large K > 1000. More interestingly, we note that MGC oper-
ations with different K values all have a very similar spectrum

with Â in the medium region. It indicates that MGC operation
and Â preserve the similar structure information. In contrast,
Âk will degenerate to the over-smoothing stationarity rapidly
as K increases. In other words, the GDC-based models with
the linear combination of { Âk

}
∞

k=0 as GC operation can only
benefit from one choice, alleviating over-smoothing or capture
long-distance information, not both, i.e., the tradeoff dilemma
discussed in Section III (more illustrations on other datasets
can be found in Supplementary material, where similar phe-
nomena have been witnessed).

Here, we also provide a synthetic experiments. Specifically,
we first generate 300 synthetic random graphs with different
sizes and sparsity by stochastic block model [19], which is a
popular generative model for random graphs. Then, as for M
and ÂK , we count the number of nondegenerate eigenvalues
λ with λ > ϵ. Intuitively, the ratio of R(S) = C(S)/C( Â) is
regarded as an index of the ability to avoid over-smoothing in
GC operation S. Based on the numerical results in Fig. 3(c),
we can find that MGC operation can always keep large R(M)

(slightly less than 1.0) even with large K , while R( ÂK )

vanishes to 0 rapidly. It leads the consistent conclusion with
the two examples in Fig. 3(a) and (b).

C. MGC Pipeline

Following SGC, S2GC, and APPNP, which all decouple the
feature propagation and transformation, we propose a simple
pipeline as follows:

Ŷ = F3((1 − α)σ(F1(M X)) + ασ(F2(X))) (12)

where F∗(·) is a trainable linear layer, the activation function
σ(·) is set as ReLU, and the row Ŷ i in Ŷ is the predicted label
distributions (before the softmax function) for the node vi .
Besides, following [83], the hyperparameter α ∈ [0, 1) aims
to balance the self-information of node versus consecutive
neighbors. Actually, as Fig. 1 shows, our MGC pipeline can
be split into two main parts: 1) the fixed feature propagation
component X̃ = M X , which requires no trainable weight
and can be done in the feature preprocessing stage and
2) the feature transformation component as the only part in
training stage, which aims to train a multiclass classifier on
the preprocessed features X̃ and original features X .

D. Efficiency Analysis

Table I compares the complexity of MGC with various
GCNs. We find that MGC is equipped with high efficiency
in training and inference stages, where both the computation
and storage complexity are similar to that of SGC and S2GC
without storing the adjacent matrix and propagating features.
However, in the preprocessing stage, directly calculating MGC
operation M and conducting the feature propagation M X
are computationally inefficient and result in a dense n × n
size matrix M . Here, inspired by mini-batch-based GCNs
[10], [18], we propose to compute feature propagation M X
with b size of mini-batches to reduce the original storage
cost O(n f + n2) into O(nb + n f ), as shown in Algorithm 1.
Nevertheless, the computation cost O(K mn + n2 f ) is also
expensive, especially for large graphs. To solve this problem,
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Fig. 3. Empirical analysis of the over-smoothing problem in the MGC operation. (a) and (b) Spectrum of MGC operation M(K ) and powers of normalized
adjacent matrix ÂK with different K values on Cora and Cornell datasets, where the eigenvalues λi are ranked in decreasing order. (c) Change of the ratio
R(S) with ϵ = 0.01 of M(K ) and ÂK with varying K on 300 synthetic random graphs, where the solid line corresponds to the average value and the
transparent region is bounded by the 0.1 quantiles and 0.9 quantiles.

TABLE I
COMPUTATIONAL AND STORAGE COMPLEXITIES O(·)

Algorithm 1 Feature Propagation M X With Mini-Batches
Input: Adjacent matrix A, feature X , α, K , b;
Output: Node representation X̂ ;
Computing Â = (D + In)

−1/2(A + In)(D + In)
−1/2

for i = 0 to ⌈(N/b)⌉ − 1 do
idxs = b · i : b · (i + 1)

P = A[idxs];
M = 0 · P;
for k = 1 to K − 1 do

P = P Â
M = max{M, P}

end for
X̂ [idxs] = (1 − α)(M X) + αX

end for

inspired by GDC-based models, where the feature propagation
is conducted via iteration without computing the specific GC
operation, we propose to approximate M X softly by the
following AMGC, which can achieve linear complexity via
intermediate multiplications ( Â(. . . ( ÂX∗) . . .))

M ′ X = maxK
k=1

{
Âk X+

}
− maxK

k=1

{
Âk X−

}
(13)

where X+, X−
∈ Rn× f are the positive part and negative part

of X , respectively, i.e., X+

i j = X i j if X i j > 0, else 0, and
X−

i j = −X i j if X i j < 0, else 0. Note that AMGC may not be
tight approximation to MGC. However, we have

M X = maxK
k=1

{
Âk}X+

− maxK
k=1

{
Âk}X−. (14)

Indeed, AMGC approximates into MGC by moving X+

and X− from the outside of maximization operation into the
inside, where Âk X∗ can be computed with a linear complexity.
Intuitively, we can derive(

Ak Z
)

i j ≤
(
M ′ Z

)
i j ≤ (M Z)i j ∀ Z > 0, i, j, k (15)

which indicates that AMGC may achieve better approximation
than any GDC-based models, at least when X > 0. In partic-
ular, if X > 0, we even have the following inequation, where
M ′ X achieves a strict tight approximation to M X than any
GDC operation, i.e.,

||M X − M ′ X ||1

=

∑
i j

(M X)i j −
(
M ′ X

)
i j

≤

∑
i j

(M X)i j − (SX)i j = ||M X − SX ||1. (16)
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TABLE II
STATISTICS OF THE DATASETS FOR THE EVALUATION ON EFFECTIVENESS

V. EXPERIMENTS

Here, we evaluate MGC against the state-of-the-art
GCN models on a wide variety of benchmark datasets. To be
specific, we would first explore the effectiveness of MGC from
the abilities in three aspects: capturing neighbor information,
avoiding the over-smoothing problem, and handling long-
distance dependency without the over-squashing problem.
Then, we further estimate the scalability of our methods
for larger graphs in both transductive and inductive settings.
Finally, we turn to discuss the efficiency of our models.

A. Evaluation on Effectiveness

1) Datasets and Assortativity: We leveraged eight
benchmark graph datasets for the node classification task to
evaluate the effectiveness of MGC, including three standard
citation graph benchmarks (Cora, Citeseer, and Pubmed),
four web networks (Chameleon [50], Cornell, Texas, and
Wisconsin [44]), and another subgraph of the knowledge
graph in the film industry [57] (Actor). We applied the
standard training/validation/test split for three citation graphs
and conducted tenfold cross validation following [44]. Table II
has summarized the statistic of those datasets. The detailed
dataset description is the following.

1) Cora, Citeseer, and Pubmed are citation network
benchmark datasets [53] for node classification, where
nodes and edges denote documents and citations, respec-
tively. Node features correspond to the bag-of-words
embedding, and node labels are the academic topics.

2) Chameleon [50], Cornell, Texas, and Wisconsin [44]
are web networks, where nodes and edges represent
web pages and hyperlinks, respectively. Node features
correspond to several informative nouns on the page.
Those pages are manually classified by semantic topic
or monthly traffic.

3) Actor is the actor-only induced subgraph of the knowl-
edge graph in the film industry [57]. Each node corre-
sponds to an actor, and the edge denotes co-occurrence
on the same Wikipedia page. Node features correspond
to some keywords with manual labels.

Actually, those datasets can be split into two categories:
assortative graphs, including Cora, Citeseer, and Pubmed, with
high node homophily index (i.e., neighbor nodes have the
same labels and vice versa), and the disassortative graphs,
including other five networks, with relative lower homophily
index (i.e., nodes of the same class are far apart from each

other). In particular, we follow [44] and define the homophily
index H(G) as follows:

H(G) =
1

|V |

∑
v∈V

|
{

yv′ = yv|v
′
∈ Nv

}
|

|Nv|
(17)

where Nv is the neighbors of the node v and yv is the label
of the node v.

Along this line, we can conduct node classification exper-
iments on assortative graphs and disassortative graphs to
evaluate the ability of GCNs to capture information from the
neighbor nodes and long-distance nodes, respectively.

2) Baselines: Various GCN models are involved as base-
lines, which can be grouped into five categories as follows.

1) Vanila GCN [29] and GAT [59] are the state-of-the-art
shallow models.

2) SGC [64], S2GC [83], and APPNP [30] are the GDC-
based models.

3) JKNet [68], GCNII [7], and GRAND [4] are GCN
variants for tackling over-smoothing.

4) Geom-GCN [44] and GCN + FA [1] are GCN variants
for tackling over-squashing problem.

5) DGI [60] and GIN [67] are selected as the representa-
tions of other state-of-the-art GCN variants.

3) Settings: As shown in (12), the network structure of
MGC in the training stage is similar to a two-layer MLP. Here,
we also use the dropout strategy in the input M X and X with
dropout rate η1 and the hidden layer with dropout rate η2 to
improve performance. Actually, the best hyperparameters are
selected using grid search, where each hyperparameter is itera-
tively tuned within a predefined range. Specifically, parameter
α is varied from 0.0 to 1.0 with a step size of 0.05. Dropout
rates η1 and η2 are selected from [0, 0.05, 0.1, . . . , 0.75]. The
hidden dimension of MLP layers is selected from a range of
powers of 2, ranging from 2 to 211. Similarly, the number of
GCN layers K is chosen from a range of powers of 2, ranging
from 2 to 210. We use Adam [28] as the optimizer. The learning
rate is selected from the range [1e−5, 1.0], with each interval
[1e−i, 1e−(i − 1)] divided into smaller segments using a step
size of 0.5e−i, for i ranging from 5 to 1. Weight decay is
determined from the range [1e−6, 1.0] ∪ {0}, with a similar
division into smaller segments. We summarize the important
hyperparameters of MGC for different datasets in Table III.
(See Supplementary material for more parameter analysis.) In
particular, all our results are based on ten random runs.

4) Effect of Capturing Neighbor Information: We followed
the previous works [7], [29] and conducted experiments on the
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TABLE III
HYPERPARAMETERS FOR MGC IN DIFFERENT DATASETS FOR THE EVALUATION ON EFFECTIVENESS

Fig. 4. Prediction accuracy on (a) Cora, (b) Citeseer, and (c) Pubmed datasets with different K values.

TABLE IV
PREDICTION ACCURACY OF DIFFERENT MODELS

ON ASSORTATIVE GRAPHS

assortative graphs, where the neighbor information has a large
important effect on node labels. The average classification
accuracy of all models with the standard deviation on the
test nodes over ten random runs is summarized in Table IV.
In particular, we reused the reported results of SGC, S2GC,
APPNP, DGI, and DIN from the paper of S2GC [83], and the
reported results of GCNII, GCNII*, and GRAND from their
original papers [4], [7]. As for GCN and GAT, we reproduced
the performance based on those code links.1,2 As for JKNet,
we implemented it by following the original paper.

The results demonstrate that our MGC model achieves better
accuracy than other state-of-the-art baselines on Cora and
Citeseer datasets. As for Pubmed, MGC also achieves compet-
itive performance, especially noting that GRAND reaches the
reported results for all three datasets with two variants, i.e.,

1https://github.com/dmlc/dgl/tree/master/examples/pytorch/gcn
2https://github.com/dmlc/dgl/tree/master/examples/pytorch/gat

GRAND-l for Cora, GRAND-nl-rw for Citeseer, and Pubmed.
In particular, on Citeseer, MGC is about 1.3% better than the
best baseline, i.e., GRAND. It is also worth noting that MGC
achieves this result with K = 128. It indicates that the MGC
model can hold the neighbor information effectively, which is
important for prediction in assortative graphs, even including
long-distance neighbors.

5) Effect of Avoiding Over-Smoothing: Following [7], [22],
and [83], we explored how the performance of MGC varies
as the hyperparameter K increases on those three assor-
tative graphs, i.e., Cora, Citeseer, and Pubmed, where the
over-smoothing problems are often reported. To be specific,
we stacked K GCN layers with both K feature propagation
steps and K feature transformation steps. Also, for MGC,
SGC, S2GC, and APPNP, we only varied the number of feature
propagation steps as different K values and fixed the number
of feature transformation steps. In particular, different from the
previous works [22], [83], where the number of layers or the
corresponding parameter K varies in a relatively small range
from 2 to 26, we enlarged the upper bound to 210 to provide
more sufficient analysis.

According to the results in Fig. 4, we find that MGC not
only achieves the best performance on each dataset with almost
all settings, but also avoids the significant decrease in perfor-
mance as K increases, even beyond 1000. In other words,
MGC can avoid over-smoothing problems with high perfor-
mance, which limits the ability of other baselines. Indeed,
APPNP can also avoid over-smoothing theoretically [30], but it
fails to achieve the best performance. The hidden reason may
lie in the tradeoff dilemma we point out in the GDC-based
models, where the long-distance information is discarded.
In contrast, based on Corollary 1, MGC can exploit both the
short-distance and long-distance information better than any
GDC-based models.
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Fig. 5. t-SNE visualization of the node embeddings learned by SGC and
MGC operations on Cora with the number of layers K = 4 or 128. (a) SGC
(K = 4). (b) SGC (K = 128). (c) MGC (K = 4). (d) MGC (K = 128).

TABLE V
PREDICTION ACCURACY OF DIFFERENT MODELS

ON DISASSORTATIVE GRAPHS

In addition, in order to provide an intuitive perspective about
the effect of MGC on alleviating over-smoothing problems,
we also show the t-SNE visualization of the learned node
embeddings of the MGC operation and SGC operation on the
Cora dataset with 4 and 128 layers in Fig. 5. We can find
that SGC and MGC can both distinguish nodes with different
labels to some extent with the shallow layers. However, SGC
tends to stack nodes into multiple groups with K = 128,
where different categories cannot be separated in each group.
This phenomenon indicates the occurrence of over-smoothing.
In contrast, MGC can also achieve great performance in
distinguishing nodes with a large number of layers.

6) Effect of Handling Long-Distance Dependency: Here,
we estimate MGC on the disassortative graphs, where the
long-distance dependency between nodes is more important
for classifying nodes [58]. In particular, for capturing the long-
distance information, we set K = 100 to absorb information
in the 100-hop neighborhood. The results are summarized
in Table V, where some baselines have been removed due
to the lack of competitiveness. In particular, we reused the
reported results of Geom-GCN-I, Geom-GCN-P, and Geom-
GCN-S from the original paper [44], and the reported results of
GCN, GAT, APPNP, JKNet, and GCNII* on Chameleon, Corn,
Texas, and Wisconsin datasets from the GCNII paper [7].

Furthermore, we implemented GCN, GAT, APPNP, and
GCNII* on the Actor dataset and reproduced SGC, S2GC on
all five datasets with the code links.3,4 We reproduced JKNet
on Actor and GCN + FA on all five datasets by ourselves
based on the description in the original papers.

Based on the results, we find that MGC can outperform
other baselines by a significant margin on all five datasets,
which demonstrates the powerful ability of MGC to handle
long-distance dependency. In other words, MGC can relieve
the over-squashing problem effectively. Meanwhile, we note
that the most competitive baseline, GCNII*, is equipped with a
large number of layers for both feature propagation and feature
transformation [7], which cause the high training and test time
cost and even optimization problem. In contrast, benefitting
from the design of separating the feature propagation into the
preprocessing stage, MGC only needs to conduct the feature
transformation based on a simple two-layer MLP model with
low time complexity in the training and test stages. In addition,
GCN + FA achieves a significant improvement compared with
its base model, i.e., GCN, by connecting all nodes to link the
long-distance nodes. However, it is not competitive on most
graph datasets. It may be because connecting all nodes will
also include unnecessary noise information.

B. Evaluation on Scalability

1) Datasets: Here, we turn to estimate the performance
of our models on large-scale graph learning with five large
graphs, including three large-scale OGB benchmark datasets
for transductive learning (Arxiv, Products, and Papers100M)
and two graphs for inductive learning (Flickr and Reddit).
Standard splits are applied in all five datasets. Table VI
summarized the statistic of those datasets. The detailed
descriptions can be found as follows.

1) Ogbn-Arxiv and Ogbn-Papers100M are two citation
networks between all computer science (CS) arXiv
papers indexed by MAG [62] in different scales. Each
node is a paper, and each edge indicates the citation
relation between two papers. Node features are based
on the word2vec embedding of the title and abstract.
The subject area of each paper is set as the label.
Ogbn-Papers100M is much larger than most existing
public node classification datasets with 111M nodes.

2) MAG240M is another huge heterogeneous academic
graph [20] extracted from MAG [62], consisting of
121M paper nodes and 122M authors nodes. Here, only
the paper nodes and the corresponding citation links are
used in our experiments. Node features are based on
the RoBERTa sentence encoder [39], [49]. The subject
area of each paper is set as the label.

3) Ogbn-Products is an Amazon product copurchasing
network [10]. Nodes represent products, and edges
between two products indicate that the products are
purchased together. Node features are based on the
bag-of-words features from the product descriptions.
The top-level categories of products are set as labels.

3https://github.com/Tiiiger/SGC
4https://github.com/allenhaozhu/SSGC
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TABLE VI
STATISTICS OF THE DATASETS FOR THE EVALUATION ON SCALABILITY

TABLE VII
HYPERPARAMETERS FOR MGC AND AMGC IN DIFFERENT DATASETS FOR THE EVALUATION ON SCALABILITY

TABLE VIII
PREDICTION ACCURACY OF DIFFERENT MODELS WITH THE TRANSDUCTIVE SETTING

4) Flickr is graphs with images as nodes [75]. The
edge between two nodes denotes that those two
images share some common properties (e.g., the same
geographic location). Node features are the bag-of-word
representation of the image descriptions. Each image is
classified into one of the seven classes manually.

5) Reddit is a well-known inductive training dataset [18],
which is derived from the community structure of
numerous Reddit posts. It is a post-to-post graph,
connecting posts if the same user comments on both.
Node features are based on the word2vec vectors of the
post. The community or “subreddit” that a post belongs
to is set as the node label.

2) Baselines: Various models for large-scale graph learning
are set as baselines, including the following.

1) MLP is a two-layer neural network with the node
features as the input.

2) Vanila GCN [29] has also been involved for common
comparisons.

3) GraphSAGE [18] and ClusterGCN [10] are both
sampling-based GCNs and reduce the storage complex-
ity via sampling subgraphs from the large-scale input
graphs in each mini-batch.

4) SGC [64] and S2GC [83] are GDC-based models. Note
that APPNP is omitted, because it is not suitable for
scalable graph learning where the whole graph structure
must be involved in both forward and backward passes
during training.

In addition, following S2GC, where the authors claim that
MLP plays a more important role in OGB datasets, we achieve
a variant of AMGC, i.e., AMGC + MLP, where the liner layers
in (12), i.e., F1, F2, and F3, are replaced with a two-layer MLP,
respectively.

3) Settings: Here, we chose the best hyperparameters using
grid search with the same predefined ranges as those in
Section V-A3. As a result, we list the important hyperpa-
rameters of our models for different datasets in Table VII.
In particular, as for AMGC + MLP, we use the same hyper-
parameter as that of AMGC for a fair comparison.

4) Results: The results are summarized in Tables VIII
and IX. Specifically, in Table VIII, we reused the reported
results of MLP, GCN, and GraphSAGE on the OGB leader-
boards,5 except the result of GraphSAGE on Ogbn-Products,
which is from S2GC paper [83]. The result of ClusterGCN

5https://ogb.stanford.edu/docs/leader_nodeprop/
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TABLE IX
PREDICTION ACCURACY OF DIFFERENT MODELS

WITH THE INDUCTIVE SETTING

on Ogbn-Products is also from the OGB leaderboards. The
results of SGC, S2GC, and S2GC + MLP on Ogbn-Arxiv
and Ogbn-Products are copied from S2GC paper [83]. The
results of SGC on Ogbn-Papers100M and MAG240M are also
from the OGB leaderboards. In particular, we show the results
of MAG240M on its validated set due to the inaccessibility
of the labels of the test dataset. Other results in this table
are based on our implementation with the guidance of their
original papers. Besides, we have not found the result of
ClusterGCN on Ogbn-Papers100M and MAG240M in previ-
ous works. Meanwhile, We cannot conduct this experiment due
to the large memory requirements, although it can be achieved
theoretically. In Table IX, we reused the reported results of
GraphSAGE, ClusterGCN, SGC, and S2GC on Reddit from
its original paper [10], [18], [64], [83]. We reproduced other
results of baselines with the guidance of their original papers.
In particular, MLP is implemented as two linear layers with
ReLU activation and dropout in the hidden layer. The size of
the hidden layer is the same as that of our models.

Based on the results, we first find that MGC cannot be
conducted on Products, Papers100M, and MAG240M due to
the high complexity in the preprocessing stage. In contrast,
AMGC can be applied to all five large datasets. We also
find that our models have achieved competitive performance
in both transductive and inductive settings. Specifically, our
models outperform GDC-based models consistently on all
five datasets. In particular, with MLP in OGB datasets, both
S2GC + MLP and AMGC + MLP can achieve a significant
improvement, but AMGC + MLP performs better. Compared
with sampling-based GCNs, our models achieve the best per-
formance on four datasets. As for Papers100M and MAG120M
datasets, our models cannot outperform GraphSAGE with
deliberated network structures. However, as shown in Table I,
GraphSAGE is computation cost during training or inference
with exponential complexity in the number of feature propa-
gation steps. In addition, as an approximated variant of MGC,
AMGC has achieved close performance to MGC, although
with a linear complexity. In other words, AMGC is an efficient
approximation for large-scale graphs.

C. Evaluation on Efficiency

1) Baselines and Settings: Here, we analyze the efficiency
of our models by measuring the time cost on Flickr and Reddit
datasets. To be specific, we use GraphSAGE, ClusterGCN,

TABLE X
TIME COST IN SECONDS FOR DIFFERENT MODELS

ON FLICKR AND REDDIT

SGC, and S2GC as baselines. In GraphSAGE and ClusterGCN,
we used the same hyperparameter settings as their original
papers on Reddit. As for Flickr, we set batch size as 512 and
hidden size as 128 in GraphSAGE and set cluster number
as 500 and batch size as 10 in ClusterGCN, where the
best performance was achieved. As for SGC, S2GC, and
our models, i.e., MGC and AMGC, we used the mini-batch
training strategy in the training stage with a batch size of 2048.
All models are trained with 100 epochs. In particular, the batch
size of MGC in the preprocessing stage is set as 256 here.

2) Results: Table X summarizes the time cost of different
models in preprocessing and training stages. First, we can find
that our models are efficient in training strategy with high
accuracy. Second, MGC is time-costing in the preprocessing
stage due to the high-computational complexity shown in
Table I. However, the approximated approach, i.e., AMGC,
enjoys an efficient preprocessing stage with competitive per-
formance. In particular, the large difference between the time
cost of MGC in the preprocessing stage in two datasets is
caused by the different scales of two graphs (89K nodes and
900K edges versus 232K nodes and 12M edges).

VI. RELATED WORKS

In this article, we have focused on GDCs and discussed their
tradeoff in addressing the over-smoothing and over-squashing
issues. Here, we provide additional analysis of other related
literature for GCNs [66].

To mitigate the over-smoothing problem, two popular direc-
tions have emerged, namely, modifications to the network
architecture and the graph structure. First, inspired by con-
volutional neural networks (CNNs), dilated convolutions and
residual connections have been incorporated into GCNs to cre-
ate deeper architectures [34]. Besides directly adding residual
connections to initial node features, their transformed features
by a trainable projection are also proven to be effective [9]
with the help of graph-regularization optimization. In addition,
normalization techniques, such as batch normalization, have
been employed to prevent nodes from becoming indistinguish-
able [35], [37], [69], [81], [82], even normalizing the learnable
weights of GCNs [42]. More recently, nonlinear aggregators
were also used in the message propagation mechanism in
GCNs to enhance the network’s capacity and robustness [61].
Second, better graph structure can be inferred from node
embedding to alleviate over-smoothing, which, in turn, results
in more expressive node embeddings [8], [23]. Localized
subgraphs for each node can also be utilized to restrict the
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scope of GCNs and enable the network to reach arbitrary
depths [25], [74]. However, these methods solely focus on
the over-smoothing problem without over-squashing.

Regarding the over-squashing problem, most solutions con-
centrate on graph rewiring techniques, such as adding fully
connected layers [1] or modifying the graph structure by
adding or removing edges based on the analysis of graph
curvature [3], [11], [13], [58] or graph spectrum [24], [55].
However, recent studies have reported that those methods
can also result in a tradeoff between the over-smoothing and
over-squashing problems, supported by empirical evidence
[27], [38] or theoretical analysis [15], [41]. In addition, differ-
ent from our methods, graph rewiring methods often require
high complexity and are not easily extendable to large graphs.
Recently, some other works also attempted to enhance the
long-range interactions by defining multihop message passing
layer directly [17] or skipping the convolution operation for
some nodes randomly [40]. However, they usually intro-
duce expensive training costs or several unnecessary noises
compared with our methods.

VII. CONCLUSION

In this article, we find that GDC-based models can only
achieve a tradeoff between tackling over-smoothing and
over-squashing problems. To this end, instead of using
the linear combination, such as that in GDC-based models,
we proposed a simple yet effective GC, i.e., MGC, by applying
an elementwise maximizing operation for exploiting all
possible powers of the normalized adjacent matrix. MGC can
alleviate over-squashing better than any GDC-based models
theoretically and avoid over-smoothing with several empirical
evidences. Furthermore, an efficient approximated approach
with a linear complexity is developed for large-scale graph
learning. Finally, extensive experiments on various benchmark
datasets have been conducted to compare the effectiveness,
scalability, and efficiency of different models. In particular,
our models achieve competitive performance with lower
complexity, even on large graphs with more than 100M nodes.
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